Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rheumatology
Volume 2012, Article ID 167096, 4 pages
http://dx.doi.org/10.1155/2012/167096
Research Article

Fc-Gamma Receptor 3B Copy Number Variation Is Not a Risk Factor for Behçet’s Disease

1Department of Rheumatology, The Queen Elizabeth Hospital, 28 Woodville Road, Woodville South, SA, 5011, Australia
2Rheumatology Research Centre, Tehran University of Medical Sciences, Shariati Hospital, Kargar Avenue, Tehran 14114, Iran
3Rheumatology Department, Baqyiatallah University of Medical Sciences, Baghiatallah hospital, Molla Sadra Street, Tehran 14359, Iran
4Chronic Respiratory Diseases Research Centre, Shahid Beheshti University of Medical Sciences, Massih Daneshvari Hospital, Shaid Bahonar Street, Tehran 19556, Iran
5Discipline of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia

Received 13 February 2012; Accepted 10 April 2012

Academic Editor: Lorenzo Beretta

Copyright © 2012 Rachel Black et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Sakane, M. Takeno, N. Suzuki, and G. Inaba, “Behçet's disease,” The New England Journal of Medicine, vol. 341, no. 17, pp. 1284–1291, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. D. McGonagle and M. F. McDermott, “A proposed classification of the immunological diseases,” PLoS Medicine, vol. 3, no. 8, article e297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. V. D. Kapsimali, M. A. Kanakis, G. A. Vaiopoulos, and P. G. Kaklamanis, “Etiopathogenesis of Behçet's disease with emphasison the role of immunological aberrations,” Clinical Rheumatology, vol. 29, no. 11, pp. 1211–1216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Pineton de Chambrun, B. Wechsler, G. Geri, P. Cacoub, and D. Saadoun, “New insights into the pathogenesis ofBehçet’s disease,” Autoimmunity Reviews. In press.
  5. P. Stankiewicz and J. R. Lupski, “Structural variation in the human genome and its role in disease,” Annual Review of Medicine, vol. 61, pp. 437–455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Nimmerjahn and J. V. Ravetch, “Fcγ receptors as regulators of immune responses,” Nature Reviews Immunology, vol. 8, no. 1, pp. 34–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. L. C. Willcocks, P. A. Lyons, M. R. Clatworthy et al., “Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake,” Journal of Experimental Medicine, vol. 205, no. 7, pp. 1573–1582, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Fanciulli, P. J. Norsworthy, E. Petretto et al., “FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity,” Nature Genetics, vol. 39, no. 6, pp. 721–723, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Mamtani, J. M. Anaya, W. He, and S. K. Ahuja, “Association of copy number variation in the FCGR3B gene with risk of autoimmune diseases,” Genes and Immunity, vol. 11, no. 2, pp. 155–160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. C. Nossent, M. Rischmueller, A. Becker-Merok, and S. Lester, “Low copy number of Fcgamma receptor 3B gene is a disease susceptibility an severity factor in primay Sjögren's syndrome,” Arthritis & Rheumatism, vol. 63, article S389, 2011. View at Google Scholar
  11. S. W. Graf, S. Lester, J. C. Nossent, C. L. Hill, S. Proudman, and A. Lee, “Low copy number of the FCGR3B gene and rheumatoid arthritis: a case control study and meta-analysis,” Arthritis Research & Therapy, vol. 14, no. 1, article R28, 2012. View at Google Scholar
  12. C. McKinney, M. Fanciulli, M. E. Merriman et al., “Association of variation in Fcγ receptor 3B gene copy number with rheumatoid arthritis in Caucasian samples,” Annals of the Rheumatic Diseases, vol. 69, no. 9, pp. 1711–1716, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. International Study Group for Behçet’s disease, “Criteria for diagnosis of Behçet’s disease,” The Lancet, vol. 335, pp. 1078–1080, 1990. View at Google Scholar
  14. K. Aksu, G. Kitapcioglu, G. Keser et al., “FcγRIIa, IIIa and IIIb gene polymorphisms in Behçet's disease: do they have any clinical implications?” Clinical and Experimental Rheumatology, vol. 26, no. 4, supplement 50, pp. S77–S83, 2008. View at Google Scholar · View at Scopus
  15. H. A. Niederer, M. R. Clatworthy, L. C. Willcocks, and K. G. C. Smith, “FcγRIIB, FcγRIIIB, and systemic lupus erythematosus,” Annals of the New York Academy of Sciences, vol. 1183, pp. 69–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. W. Morgan, J. I. Robinson, J. H. Barrett et al., “Association of FCGR2A and FCGR2A-FCGR3A haplotypes with susceptibility to giant cell arteritis,” Arthritis Research and Therapy, vol. 8, no. 4, article R109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. C. C. Khor, S. Davila, W. B. Breunis, Y. C. Lee, C. Shimizu, V. J. Wright et al., “Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease,” Nature Genetics, vol. 43, no. 12, pp. 1241–1246, 2011. View at Google Scholar