Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rheumatology
Volume 2012, Article ID 789164, 6 pages
http://dx.doi.org/10.1155/2012/789164
Review Article

IgG4-Related Fibrotic Diseases from an Immunological Perspective: Regulators out of Control?

1Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, 1066 CX Amestrdam, The Netherlands
2Sanquin Blood Supply Foundation, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands

Received 30 December 2011; Accepted 14 April 2012

Academic Editor: Yoh Zen

Copyright © 2012 Laura C. Lighaam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Umehara, K. Okazaki, Y. Masaki et al., “A novel clinical entity, IgG4-related disease (IgG4RD): general concept and details,” Modern Rheumatology, vol. 22, no. 1, pp. 1–14, 2012. View at Publisher · View at Google Scholar
  2. H. Takahashi, M. Yamamoto, T. Tabeya et al., “The immunobiology and clinical characteristics of IgG4 related diseases,” Journal of Autoimmunity. In press. View at Publisher · View at Google Scholar
  3. K. Okazaki, K. Uchida, M. Koyabu, H. Miyoshi, and M. Takaoka, “Recent advances in the concept and diagnosis of autoimmune pancreatitis and IgG4-related disease,” Journal of Gastroenterology, vol. 46, no. 3, pp. 277–288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Watanabe, K. Yamashita, S. Fujikawa et al., “Involvement of activation of toll-like receptors and nucleotide-binding oligomerization domain-like receptors in enhanced IgG4 responses in autoimmune pancreatitis,” Arthritis and Rheumatism, vol. 64, no. 3, pp. 914–924, 2012. View at Publisher · View at Google Scholar
  5. R. Akitake, T. Watanabe, C. Zaima et al., “Possible involvement of T helper type 2 responses to Toll-like receptor ligands in IgG4-related sclerosing disease,” Gut, vol. 59, no. 4, pp. 542–545, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Khosroshahi, D. B. Bloch, V. Deshpande, and J. H. Stone, “Rituximab therapy leads to rapid decline of serum IgG4 levels and prompt clinical improvement in IgG4-related systemic disease,” Arthritis and Rheumatism, vol. 62, no. 6, pp. 1755–1762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Khosroshahi, M. N. Carruthers, V. Deshpande, S. Unizony, D. B. Bloch, and J. H. Stone, “Rituximab for the treatment of IgG4-related disease: lessons from 10 consecutive patients,” Medicine, vol. 91, no. 1, pp. 57–66, 2012. View at Publisher · View at Google Scholar
  8. R. C. Aalberse, R. Van Der Gaag, and J. Van Leeuwen, “Serologic aspects of IgG4 antibodies. I. Prolonged immunization results in an IgG4-restricted response,” Journal of Immunology, vol. 130, no. 2, pp. 722–726, 1983. View at Google Scholar · View at Scopus
  9. R. C. Aalberse, S. O. Stapel, J. Schuurman, and T. Rispens, “Immunoglobulin G4: an odd antibody,” Clinical and Experimental Allergy, vol. 39, no. 4, pp. 469–477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Bruhns, B. Iannascoli, P. England et al., “Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses,” Blood, vol. 113, no. 16, pp. 3716–3725, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. H. Tao, R. I. F. Smith, and S. L. Morrison, “Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation,” Journal of Experimental Medicine, vol. 178, no. 2, pp. 661–667, 1993. View at Google Scholar · View at Scopus
  12. S. M. Canfield and S. L. Morrison, “The binding affinity of human IgG for its high affinity Fc receptor is determined by multiple amino acids in the CH2 domain and is modulated by the hinge region,” Journal of Experimental Medicine, vol. 173, no. 6, pp. 1483–1491, 1991. View at Google Scholar · View at Scopus
  13. M. van der Neut Kolfschoten, J. Schuurman, M. Losen et al., “Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange,” Science, vol. 317, no. 5844, pp. 1554–1557, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. S. Van Der Zee, P. Van Swieten, and R. C. Aalberse, “Inhibition of complement activation by IgG4 antibodies,” Clinical and Experimental Immunology, vol. 64, no. 2, pp. 415–422, 1986. View at Google Scholar · View at Scopus
  15. J. Punnonen, G. Aversa, B. G. Cocks et al., “Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 8, pp. 3730–3734, 1993. View at Google Scholar · View at Scopus
  16. T. Platts-Mills, J. Vaughan, S. Squillace, J. Woodfolk, and R. Sporik, “Sensitisation, asthma, and a modified Th2 response in children exposed to cat allergen: a population-based cross-sectional study,” Lancet, vol. 357, no. 9258, pp. 752–756, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Jeannin, S. Lecoanet, Y. Delneste, J. F. Gauchat, and J. Y. Bonnefoy, “IgE versus IgG4 production can be differentially regulated by IL-10,” Journal of Immunology, vol. 160, no. 7, pp. 3555–3561, 1998. View at Google Scholar · View at Scopus
  18. Y. Zen, T. Fujii, K. Harada et al., “Th2 and regulatory immune reactions are increased in immunoglobin G4-related sclerosing pancreatitis and cholangitis,” Hepatology, vol. 45, no. 6, pp. 1538–1546, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Miyoshi, K. Uchida, T. Taniguchi et al., “Circulating naïve and CD4+CD25high regulatory T cells in patients with autoimmune pancreatitis,” Pancreas, vol. 36, no. 2, pp. 133–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. F. E. Lund and T. D. Randall, “Effector and regulatory B cells: modulators of CD4+ T cell immunity,” Nature Reviews Immunology, vol. 10, no. 4, pp. 236–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Van de Veen, personal communication.
  22. P. G. Calkhoven, M. Aalbers, V. L. Koshte et al., “Relationship between IgG1 and IgG4 antibodies to foods and the development of IgE antibodies to inhalant allergens. II. Increased levels of IgG antibodies to foods in children who subsequently develop IgE antibodies to inhalant allergens,” Clinical and Experimental Allergy, vol. 21, no. 1, pp. 99–107, 1991. View at Google Scholar · View at Scopus
  23. V. L. Koshte, M. Aalbers, P. G. Calkhoven, and R. C. Aalberse, “The potent IgG4-inducing antigen in banana is a mannose-binding lectin, BanLec-I,” International Archives of Allergy and Immunology, vol. 97, no. 1, pp. 17–24, 1992. View at Google Scholar · View at Scopus
  24. V. L. Koshte, W. Van Dijk, M. E. Van der Stelt, and R. C. Allbers, “Isolation and characterization of BanLec-I, a mannoside-binding lectin from Musa paradisiac (banana),” Biochemical Journal, vol. 272, no. 3, pp. 721–726, 1990. View at Google Scholar · View at Scopus
  25. V. Coelho, S. Krysov, A. M. Ghaemmaghami et al., “Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 43, pp. 18587–18592, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. T. Saab, J. L. Hornick, C. D. Fletcher, S. J. Olson, and C. M. Coffin, “IgG4 plasma cells in inflammatory myofibroblastic tumor: inflammatory marker or pathogenic link,” Modern Pathology, vol. 24, no. 4, pp. 606–612, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Yamamoto, H. Yamaguchi, S. Aishima et al., “Inflammatory myofibroblastic tumor versus igg4-related sclerosing disease and inflammatory pseudotumor: a comparative clinicopathologic study,” American Journal of Surgical Pathology, vol. 33, no. 9, pp. 1330–1340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Zaidan, P. Cervera-Pierot, S. De Seigneux et al., “Evidence of follicular T-cell implication in a case of IgG4-related systemic disease with interstitial nephritis,” Nephrology Dialysis Transplantation, vol. 26, no. 6, pp. 2047–2050, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Khosroshahi and J. H. Stone, “A clinical overview of IgG4-related systemic disease,” Current Opinion in Rheumatology, vol. 23, no. 1, pp. 57–66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. R. Stone, “Aortitis, periaortitis, and retroperitoneal fibrosis, as manifestations of IgG4-related systemic disease,” Current Opinion in Rheumatology, vol. 23, no. 1, pp. 88–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. R. P. Sah and S. T. Chari, “Serologic issues in IgG4-related systemic disease and autoimmune pancreatitis,” Current Opinion in Rheumatology, vol. 23, no. 1, pp. 108–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Sato, K. Notohara, M. Kojima, K. Takata, Y. Masaki, and T. Yoshino, “IgG4-related disease: Historical overview and pathology of hematological disorders: review Article,” Pathology International, vol. 60, no. 4, pp. 247–258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Kisseleva and D. A. Brenner, “Mechanisms of fibrogenesis,” Experimental Biology and Medicine, vol. 233, no. 2, pp. 109–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. S. B. Lee and R. Kalluri, “Mechanistic connection between inflammation and fibrosis,” Kidney International, vol. 78, no. 119, pp. S22–S26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Bellini and S. Mattoli, “The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses,” Laboratory Investigation, vol. 87, no. 9, pp. 858–870, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. R. A. Reilkoff, R. Bucala, and E. L. Herzog, “Fibrocytes: emerging effector cells in chronic inflammation,” Nature Reviews Immunology, vol. 11, no. 6, pp. 427–435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. T. A. Wynn and L. Barron, “Macrophages: master regulators of inflammation and fibrosis,” Seminars in Liver Disease, vol. 30, no. 3, pp. 245–257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. V. Apte, P. S. Haber, T. L. Applegate et al., “Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture,” Gut, vol. 43, no. 1, pp. 128–133, 1998. View at Google Scholar · View at Scopus
  39. K. Wake, “Perisinusoidal stellate cells (fat-storing cells, interstitial cell, lipocytes), their related structure in and around the liver sinusoids, and vitamin A storing cells in extrahepatic organs,” International Review of Cytology, vol. 66, pp. 303–353, 1980. View at Google Scholar · View at Scopus
  40. D. F. Brandão, F. S. Ramalho, A. L. C. Martinelli, S. Zucoloto, and L. N. Z. Ramalho, “Relationship between plasma cells and hepatic stellate cells in autoimmune hepatitis,” Pathology Research and Practice, vol. 206, no. 12, pp. 800–804, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Apte, R. Pirola, and J. Wilson, “The fibrosis of chronic pancreatitis: new insights into the role of pancreatic stellate cells,” Antioxidants and Redox Signaling, vol. 15, no. 10, pp. 2711–2722, 2011. View at Publisher · View at Google Scholar
  42. P. Meister, E. Konrad, and N. Hoehne, “Incidence and histological structure of the storiform pattern in benign and malignant fibrous histiocytomas,” Virchows Archiv, vol. 393, no. 1, pp. 93–101, 1981. View at Google Scholar · View at Scopus
  43. V. Brinkmann, C. H. Heusser, J. Baer, E. Kilchherr, and F. Erard, “Interferon-alpha suppresses the capacity of T cells to help antibody production by human B cells,” Journal of Interferon Research, vol. 12, no. 4, pp. 267–274, 1992. View at Google Scholar · View at Scopus
  44. I. Turesson, “Distribution of immunoglobulin containing cells in human bone marrow and lymphoid tissues,” Acta Medica Scandinavica, vol. 199, no. 4, pp. 293–304, 1976. View at Google Scholar · View at Scopus
  45. R. Pabst, M. W. Russell, and P. Brandtzaeg, “Tissue distribution of lymphocytes and plasma cells and the role of the gut,” Trends in Immunology, vol. 29, no. 5, pp. 206–208, 2008. View at Publisher · View at Google Scholar · View at Scopus