Table of Contents Author Guidelines Submit a Manuscript
International Journal of Reconfigurable Computing
Volume 2011, Article ID 897189, 12 pages
Research Article

Reduced-Precision Redundancy on FPGAs

NSF Center for High-Performance Reconfigurable Computing (CHREC), Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA

Received 20 May 2011; Revised 29 July 2011; Accepted 29 July 2011

Academic Editor: Salvatore Pontarelli

Copyright © 2011 Brian Pratt et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Reduced-precision redundancy (RPR) has been shown to be a viable alternative to triple modular redundancy (TMR) for digital circuits. This paper builds on previous research by offering a detailed analysis of the implementation of RPR on FPGAs to improve reliability in soft error environments. Example implementations and fault injection experiments demonstrate the cost and benefits of RPR, showing how RPR can be used to improve the failure rate by up to 200 times over an unmitigated system at costs less than half that of TMR. A novel method is also presented for improving the error-masking ability of RPR by up to 5 times at no additional hardware cost under certain conditions. This research shows RPR to be a very flexible soft error mitigation technique and offers insight into its application on FPGAs.