Table of Contents Author Guidelines Submit a Manuscript
International Journal of Reconfigurable Computing
Volume 2012 (2012), Article ID 186057, 12 pages
Research Article

DMPDS: A Fast Motion Estimation Algorithm Targeting High Resolution Videos and Its FPGA Implementation

1Group of Architectures and Integrated Circuits (GACI), Federal University of Pelotas (UFPEL), 96010-610 Pelotas, RS, Brazil
2Microelectronics Group (GME), Federal University of Rio Grande do Sul (UFRGS), 90040-060 Porto Alegre, RS, Brazil

Received 2 May 2012; Accepted 9 October 2012

Academic Editor: Michael Hübner

Copyright © 2012 Gustavo Sanchez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper presents a new fast motion estimation (ME) algorithm targeting high resolution digital videos and its efficient hardware architecture design. The new Dynamic Multipoint Diamond Search (DMPDS) algorithm is a fast algorithm which increases the ME quality when compared with other fast ME algorithms. The DMPDS achieves a better digital video quality reducing the occurrence of local minima falls, especially in high definition videos. The quality results show that the DMPDS is able to reach an average PSNR gain of 1.85 dB when compared with the well-known Diamond Search (DS) algorithm. When compared to the optimum results generated by the Full Search (FS) algorithm the DMPDS shows a lose of only 1.03 dB in the PSNR. On the other hand, the DMPDS reached a complexity reduction higher than 45 times when compared to FS. The quality gains related to DS caused an expected increase in the DMPDS complexity which uses 6.4-times more calculations than DS. The DMPDS architecture was designed focused on high performance and low cost, targeting to process Quad Full High Definition (QFHD) videos in real time (30 frames per second). The architecture was described in VHDL and synthesized to Altera Stratix 4 and Xilinx Virtex 5 FPGAs. The synthesis results show that the architecture is able to achieve processing rates higher than 53 QFHD fps, reaching the real-time requirements. The DMPDS architecture achieved the highest processing rate when compared to related works in the literature. This high processing rate was obtained designing an architecture with a high operation frequency and low numbers of cycles necessary to process each block.