Table of Contents Author Guidelines Submit a Manuscript
International Journal of Reconfigurable Computing
Volume 2012, Article ID 368351, 16 pages
http://dx.doi.org/10.1155/2012/368351
Research Article

Object Recognition and Pose Estimation on Embedded Hardware: SURF-Based System Designs Accelerated by FPGA Logic

Department of Computer Science, Augsburg University of Applied Sciences, An der Hochschule 1, 86161 Augsburg, Germany

Received 4 May 2012; Revised 17 September 2012; Accepted 17 September 2012

Academic Editor: René Cumplido

Copyright © 2012 Michael Schaeferling et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. M. Atiq, U. Farooq, R. Ibrahim, O. Khalid, and M. Amar, “Vehicle detection and shape recognition using optical sensors: a review,” in Proceedings of the 2nd International Conference on Machine Learning and Computing (ICMLC '10), pp. 223–227, February 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Hermes, J. Einhaus, M. Hahn, C. Wöhler, and F. Kummert, “Vehicle tracking and motion prediction in complex urban scenarios,” in Proceedings of the IEEE Intelligent Vehicles Symposium (IV '10), pp. 26–33, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. D. M. Jang and M. Turk, “Car-Rec: a real time car recognition system,” in Proceedings of the IEEE Workshop on Applications of Computer Vision (WACV '11), pp. 599–605, January 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Höferlin and K. Zimmermann, “Towards reliable traffic sign recognition,” in Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 324–329, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. F. Liu, Y. F. Su, M. K. Ko, and P. N. Yu, “Development of a vision-based driver assistance system with lane departure warning and forward collision warning functions,” in Proceedings of the Digital Image Computing: Techniques and Applications (DICTA '08), pp. 480–485, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. J. Henderson and S. Feiner, “Evaluating the benefits of augmented reality for task localization in maintenance of an armored personnel carrier turret,” in Proceedings of the 8th IEEE International Symposium on Mixed and Augmented Reality (ISMAR '09), pp. 135–144, Orlando, Fla, USA, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Schwerdtfeger, R. Reif, W. A. Günthner et al., “Pick-by-vision: a first stress test,” in Proceedings of the 10th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 115–124, October 2009.
  8. G. Amato, F. Falchi, and P. Bolettieri, “Recognizing landmarks using automated classification techniques: an evaluation of various visual features,” in Proceedings of the 2nd International Conferences on Advances in Multimedia (MMEDIA '10), pp. 78–83, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Harris and M. Stevens, “A Combined corner and edge detector,” in Proceedings of the 4th Alvey Vision Conference, pp. 147–151, Manchester, UK, 1988.
  11. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Wu, Z. Shi, and Y. Zhong, “Detailed analysis and evaluation of keypoint extraction methods,” in Proceedings of the International Conference on Computer Application and System Modeling (ICCASM '10), vol. 2, pp. 562–566, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Schaeferling and G. Kiefer, “Flex-SURF: a flexible architecture for FPGA-based robust feature extraction for optical tracking systems,” in Proceedings of the International Conference on Reconfigurable Computing and FPGAs (ReConFig '10), pp. 458–463, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Schaeferling and G. Kiefer, “Object recognition on a chip: a complete SURF-based system on a single FPGA,” in Proceedings of the International Conference on Reconfigurable Computing and FPGAs (ReConFig '11), pp. 49–54, 2011.
  15. K. Murphy, A. Torralba, D. Eaton, and W. Freeman, “Object detection and localization using local and global features,” in Toward Category-Level Object Recognition, vol. 4170, pp. 382–400, 2006.
  16. A. Collet, M. Martinez, and S. S. Srinivasa, “The MOPED framework: object recognition and pose estimation for manipulation,” The International Journal of Robotics Research, vol. 30, no. 10, pp. 1284–1306, 2011. View at Google Scholar
  17. F. Ren, J. Huang, R. Jiang, and R. Klette, “General traffic sign recognition by feature matching,” in Proceedings of the 24th International Conference Image and Vision Computing New Zealand (IVCNZ '09), pp. 409–414, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Gossow, J. Pellenz, and D. Paulus, “Danger sign detection using color histograms and SURF matching,” in Proceedings of the IEEE International Workshop on Safety, Security and Rescue Robotics (SSRR '08), pp. 13–18, November 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Besbes, A. Apatean, A. Rogozan, and A. Bensrhair, “Combining SURF-based local and global features for road obstacle recognition in far infrared images,” in Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems (ITSC '10), pp. 1869–1874, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Cornells and L. V. Gool, “Fast scale invariant feature detection and matching on programmable graphics hardware,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR '08), pp. 1–8, Anchorage, Alaska, USA, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Schulz, F. Jung, S. Hartte et al., “CUDA SURF—a real-time implementation for SURF,” http://www.d2.mpi-inf.mpg.de/surf.
  22. P. Azad, T. Asfour, and R. Dillmann, “Combining Harris interest points and the SIFT descriptor for fast scale-invariant object recognition,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '09), pp. 4275–4280, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. W. C. Chen, Y. Xiong, J. Gao, N. Gelfand, and R. Grzeszczuk, “Efficient extraction of robust image features on mobile devices,” in Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR '07), pp. 287–288, November 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Zhang, H. Sang, and X. Shen, “Overview of approaches for accelerating scale invariant feature detection algorithm,” in Proceedings of the International Conference on Electric Information and Control Engineering (ICEICE '11), pp. 585–589, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Bouris, A. Nikitakis, and I. Papaefstathiou, “Fast and efficient FPGA-based feature detection employing the SURF algorithm,” in Proceedings of the 18th IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM '10), pp. 3–10, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Šváb, T. Krajník, J. Faigl, and L. Přeučil, “FPGA based speeded up robust features,” in Proceedings of the IEEE International Conference on Technologies for Practical Robot Applications (TePRA '09), pp. 35–41, Woburn, Mass, USA, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Evans, “Notes on the OpenSURF Library,” Tech. Rep. CSTR-09-001, University of Bristol, 2009. View at Google Scholar
  28. V. Lepetit and P. Fua, “Monocular model-based 3D tracking of rigid objects: a survey,” Foundations and Trends in Computer Graphics and Vision, vol. 1, no. 1, 2005. View at Google Scholar
  29. M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic algorithm configuration,” in Proceedings of the 4th International Conference on Computer Vision Theory and Applications (VISAPP '09), pp. 331–340, February 2009. View at Scopus
  30. M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981. View at Publisher · View at Google Scholar · View at Scopus
  31. K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-D point sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 9, no. 5, pp. 698–700, 1987. View at Google Scholar