Table of Contents Author Guidelines Submit a Manuscript
International Journal of Reconfigurable Computing
Volume 2012, Article ID 752910, 15 pages
http://dx.doi.org/10.1155/2012/752910
Review Article

High Performance Biological Pairwise Sequence Alignment: FPGA versus GPU versus Cell BE versus GPP

1Institute of Integrated Systems, School of Engineering, The University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
2Electrical and Computer Engineering Department, The University of Arizona, Tucson, AZ 85721-0104, USA

Received 15 December 2011; Revised 13 February 2012; Accepted 17 February 2012

Academic Editor: Kentaro Sano

Copyright © 2012 Khaled Benkrid et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Durbin, S. Eddy, S. Krogh, and G. Michison, Biological Sequence Analysis: Probabilistic Models for Proteins and Nucleic Acids, Cambridge University Press, 1998.
  2. S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for similarities in the amino acid sequence of two proteins,” Journal of Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970. View at Google Scholar · View at Scopus
  3. T. F. Smith and M. S. Waterman, “Identification of common molecular subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195–197, 1981. View at Google Scholar · View at Scopus
  4. K. Benkrid, Y. Liu, and A. Benkrid, “A highly parameterized and efficient FPGA-Based skeleton for pairwise biological sequence alignment,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 4, pp. 561–570, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Oliver, B. Schmidt, and D. Maskell, “Hyper customized processors for bio-sequence database scanning on FPGAs,” in Proceedings of the ACM/SIGDA 13th ACM International Symposium on Field Programmable Gate Arrays (FPGA '05), pp. 229–237, February 2005. View at Scopus
  6. G. A. Harrison, J. M. Tanner, D. R. Pilbeam, and P. T. Baker, Human Biology: An Introduction to Human Evolution, Variation, Growth, and Adaptability, Oxford Science, 1988.
  7. HP Proliant DL145 Server Series, Hewlett-Packard, 2007, http://www.hp.com/.
  8. Celoxica, The RCHTX FPGA Acceleration Card Data Sheets, Celoxica, 2007, http://www.hypertransport.org/docs/tech/rchtx_datasheet_screen.pdf.
  9. Xilinx Corporation, Virtex-4 Family Data Sheets, 2007, http://www.xilinx.com/support/documentation/virtex-4_data_sheets.htm.
  10. Agility DS, Handel-C Reference Manual, 2009, http://www.mentor.com/products/fpga/handel-c/upload/handelc-reference.pdf.
  11. Nvidia Corporation, GeForce 8800 GPUs, 2009, http://www.nvidia.co.uk/page/geforce_8800.html.
  12. CUDA, CUDA Programming Guide Version 1.1, NVIDIA Corporation, 2009, http://developer.nvidia.com/cuda/.
  13. Mercury Computer Systems, Datasheet: Cell Accelerator Board, 2009, http://www.mc.com/.
  14. F. Blagojevic, D. S. Nikolopous, A. Stamatkis, and C. D. Antonopoulos, “Dynamic multigrain parallelization on the cell broadband engine,” in Proceedings of the ACM SIGPLAN Principles and Practice of Parallel Computing (PPoPP '07), San Jose, Calif, USA, March 2007.
  15. J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy, “Introduction to the cell multiprocessor,” IBM Journal of Research and Development, vol. 49, no. 4-5, pp. 589–604, 2005. View at Google Scholar · View at Scopus
  16. C. Ling, K. Benkrid, and T. Hamada, “A parameterisable and scalable smith-Waterman algorithm implementation on CUDA-compatible GPUs,” in Proceedings of the IEEE 7th Symposium on Application Specific Processors (SASP '09), pp. 94–100, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Munekawa, F. Ino, and K. Hagihara, Design and Implementation of the Smith-Waterman Algorithm on the CUDA-Compatible GPU, 2008.
  18. A. Bairoch and R. Apweiler, The SWISS-PROT protein knowledgebase and its supplement TrEMBL, Nucleic Acid Research, Release 56.3, October 2008.
  19. Y. Song, G. M. Striemer, and A. Akoglu, “Performance analysis of IBM Cell Broadband Engine on sequence alignment,” in Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems (AHS '09), pp. 439–446, August 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. W. R. Pearson and D. J. Lipman, “Improved tools for biological sequence comparison,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 8, pp. 2444–2448, 1988. View at Google Scholar · View at Scopus
  21. M. Farrar, “Striped Smith-Waterman speeds database searches six times over other SIMD implementations,” Bioinformatics, vol. 23, no. 2, pp. 156–161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Liu, K. Benkrid, A. Benkrid, and S. Kasap, “An FPGA-based web server for high performance biological sequence alignment,” in Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems (AHS '09), pp. 361–368, August 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Dohi, K. Benkrid, C. Ling, T. Hamada, and Y. Shibata, “Highly efficient mapping of the Smith-Waterman algorithm on CUDA-compatible GPUs,” in Proceedings of the 21st IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP '10), pp. 29–36, July 2010. View at Publisher · View at Google Scholar · View at Scopus