Abstract

Nonsynchronous rotating damping, i.e. energy dissipations occurring in elements rotating at a speed different from the spin speed of a rotor, can have substantial effects on the dynamic behaviour and above all on the stability of rotating systems.The free whirling and unbalance response for systems with nonsynchronous damping are studied using Jeffcott rotor model. The system parameters affecting stability are identified and the threshold of instability is computed. A general model for a multi-degrees of freedom model for a general isotropic machine is then presented. The possibility of synthesizing nonsynchronous rotating and nonrotating damping using rotor- and stator-fixed active dampers is then discussed for the general case of rotors with many degrees of freedom.