International Journal of Rotating Machinery

International Journal of Rotating Machinery / 2003 / Article

Open Access

Volume 9 |Article ID 729861 | https://doi.org/10.1155/S1023621X03000216

Akira Sadamoto, Yoshinori Murakami, "Reduction of Discrete-Frequency Fan Noise Using Slitlike Expansion Chambers", International Journal of Rotating Machinery, vol. 9, Article ID 729861, 8 pages, 2003. https://doi.org/10.1155/S1023621X03000216

Reduction of Discrete-Frequency Fan Noise Using Slitlike Expansion Chambers

Abstract

As is generally known, discrete-frequency noises are radiated from fans due to rotor-stator interaction. Their fundamental frequency is the blade-passage frequency, which is determined by the number of rotor blades and their rotating speeds. To reduce such noises, several types of silencers have been designed. Among them, the authors noted a slitlike expansion chamber (hereafter referred to as slit, for simplicity) and have studied its performance. A slit is a simple expansion chamber with a very short axial length that is placed in a duct. A slit with a circular cross-section that is concentric with a circular duct may be studied using the same interpretation as is used for a side-branch resonator muffler (closed-end tube connected to a duct); that is, the resonant frequency of a slit depends on its depth (with an open-end correction). It is expected, hence, that a slit might be applicable as a simple and axially compact silencer that is effective on discrete-frequency noises. In this article, the properties of a slit are introduced, and the applicability of a slit to actual rotating machinery is described using experimental data.

Copyright © 2003 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views130
Downloads714
Citations

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.