Abstract

Blade tip timing is a technique for the measurement of vibrations in rotating bladed assemblies. Although the fundamentals of the technique are simple, the analysis of data obtained in the presence of simultaneously occurring synchronous resonances is problematic. A class of autoregressive-based methods for the analysis of blade tip timing data from assemblies undergoing two simultaneous resonances has been developed. It includes approaches that assume both sinusoidal and general blade tip responses. The methods can handle both synchronous and asynchronous resonances. An exhaustive evaluation of the approaches was performed on simulated data in order to determine their accuracy and sensitivity. One of the techniques was found to perform best on asynchronous resonances and one on synchronous resonances. Both methods yielded very accurate vibration frequency estimates under all conditions of interest.