Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rotating Machinery
Volume 2009, Article ID 936251, 9 pages
Research Article

Systems Design, Fabrication, and Testing of a High-Speed Miniature Motor for Cryogenic Cooler

1Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
2Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA

Received 13 June 2009; Revised 20 September 2009; Accepted 12 October 2009

Academic Editor: Yasutomo Kaneko

Copyright © 2009 Dipjyoti Acharya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The long-term storage of liquid hydrogen for space missions is of considerable interest to NASA. To this end, the Reverse Turbo-Brayton Cryocooler (RTBC) is considerably lighter than conventional designs and a potentially viable and attractive solution for NASA's long-term Zero-Boil-off (ZBO) hydrogen storage system for future space missions. We present the systems design, fabrication, and performance evaluation of the Permanent Magnet Synchronous Motor (PMSM) powering a cryocooler capable of removing 20 W of heat at 18 K with a COP of 0.005 and driven by two 2-kW permanent magnet synchronous motors operating at 200 000 rpm and at room temperature and 77 K. Structural, thermal, and rotordynamic aspects of system design are considered.