Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rotating Machinery
Volume 2012, Article ID 215678, 17 pages
http://dx.doi.org/10.1155/2012/215678
Research Article

Numerical Modeling of Unsteady Cavitating Flows around a Stationary Hydrofoil

1Department of Naval Architecture and Marine Engineering, University of Michigan, 2600 Draper Drive, Ann Arbor, MI 48109, USA
2Department of Vehicle Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Received 14 February 2012; Accepted 20 June 2012

Academic Editor: Moustafa Abdel-Maksoud

Copyright © 2012 Antoine Ducoin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. K. Batchelor, An Introduction to Fluid Mechanics, Cambridge University Press, 1967.
  2. C. E. Brennen, Cavitation and Bubble Dynamics, Oxford Engineering & Sciences Series 44, Oxford University Press, New York, NY, USA, 1995.
  3. R. T. Knapp, J. W. Daily, and F. G. Hammitt, Cavitation, McGraw-Hill, New York, NY, USA, 1970.
  4. D. Joseph, “Cavitation in a flowing liquid,” Physical Review E, vol. 51, no. 3, pp. R1649–R1650, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. C.-C. Tseng and W. Shyy, “Modeling for isothermal and cryogenic cavitation,” International Journal of Heat and Mass Transfer, vol. 53, no. 1–3, pp. 513–525, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. F. R. Menter, Improved Two-Equation k-Turbulence Models for Aerodynamic Flows, NASA Technical Memorandum, 1992, 103975.
  7. S. Kim and S. Brewton, “A multiphase approach to turbulent cavitating flows,” in Proceedings of the 27th Symposium on Naval Hydrodynamics, Seoul, Korea, 2008.
  8. M. Morgut, E. Nobile, and I. Biluš, “Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil,” International Journal of Multiphase Flow, vol. 37, no. 6, pp. 620–626, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Delannoy and J. L. Kueny, “Two phase flow approach in unsteady cavitation modelling,” in Proceedings of the Spring Meeting of the Fluids Engineering Division, pp. 153–158, June 1990. View at Scopus
  10. Y. Chen and S. D. Heister, “Modeling hydrodynamic nonequilibrium in cavitating flows,” Journal of Fluids Engineering, vol. 118, no. 1, pp. 172–178, 1996. View at Google Scholar · View at Scopus
  11. S. Gopalan and J. Katz, “Flow structure and modeling issues in the closure region of attached cavitation,” Physics of Fluids, vol. 12, no. 4, pp. 895–911, 2000. View at Google Scholar · View at Scopus
  12. I. Senocak and W. Shyy, “Evaluation of cavitation models for Navier-Stokes computations,” in Proceedings of the ASME 2002 Fluids Engineering Division Summer Meeting Montreal (FEDSM '02), pp. 395–401, Quebec, Canada, July 2002. View at Scopus
  13. A. Kubota, H. Kato, and H. Yamaguchi, “A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section,” Journal of Fluid Mechanics, vol. 240, no. 1, pp. 59–96, 1992. View at Google Scholar · View at Scopus
  14. R. F. Kunz, D. A. Boger, D. R. Stinebring et al., “A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction,” Computers & Fluids, vol. 29, no. 8, pp. 849–875, 2000. View at Google Scholar · View at Scopus
  15. A. K. Singhal, M. M. Athavale, H. Li, and Y. Jiang, “Mathematical basis and validation of the full cavitation model,” Journal of Fluids Engineering, vol. 124, no. 3, pp. 617–624, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. C. L. Merkle, J. Z. Feng, and P. E. O. Buelow, “Computational modeling of the dynamics of sheet cavitation,” in Proceedings of the 3rd International Symposium on Cavitation, Grenoble, France, 1998.
  17. I. Senocak and W. Shyy, “A pressure-based method for turbulent cavitating flow computations,” Journal of Computational Physics, vol. 176, no. 2, pp. 363–383, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. J. B. Leroux, J. A. Astolfi, and J.-Y. Billard, “An experimental study of unsteady partial cavitation,” Journal of Fluids Engineering, vol. 126, no. 1, pp. 94–101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Computer Methods in Applied Mechanics and Engineering, vol. 3, no. 2, pp. 269–289, 1974. View at Google Scholar · View at Scopus
  20. C. E. Brennen, Fundamentals of Multiphase Flow, Cambridge University Press, 2005.
  21. P. Zwart, A. Gerber, and T. Belamri, “A two-phase flow model for predicting cavitation dynamics,” in 5th International Conference on Multiphase Flow, Yokohama, Japan, 2004.
  22. A. Ducoin, J. A. Astolfi, F. Deniset, and J.-F. Sigrist, “Computational and experimental investigation of flow over a transient pitching hydrofoil,” European Journal of Mechanics B, vol. 28, no. 6, pp. 728–743, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. O. Coutier-Delgosha, R. Fortes-Patella, and J. L. Reboud, “Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation,” Journal of Fluids Engineering, vol. 125, no. 1, pp. 38–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Li, G. Wang, Z. Yu, and W. Shyy, “Multiphase fluid dynamics and transport processes of low capillary number cavitating flows,” Acta Mechanica Sinica, vol. 25, no. 2, pp. 161–172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. H. Seo and S. K. Lele, “Numerical investigation of cloud cavitation and cavitation noise on a hydrofoil section,” in Proceedings of The 7th International Symposium on Cavitation (CAV '09), Ann Arbor, Mich, USA, August 2009.
  26. J. B. Leroux, O. Coutier-Delgosha, and J. A. Astolfi, “A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil,” Physics of Fluids, vol. 17, no. 5, Article ID 052101, 20 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. K. R. Laberteaux and S. L. Ceccio, “Partial cavity flows. Part 1. Cavities forming on models without spanwise variation,” Journal of Fluid Mechanics, vol. 431, pp. 1–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. J. P. Franc and J. M. Michel, “Unsteady attached cavitation on an oscillating hydrofoil,” Journal of Fluid Mechanics, vol. 193, pp. 171–189, 1988. View at Google Scholar · View at Scopus