Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rotating Machinery
Volume 2012 (2012), Article ID 257461, 8 pages
http://dx.doi.org/10.1155/2012/257461
Research Article

Numerical Modeling of a Marine Propeller Undergoing Surge and Heave Motion

Ocean Engineering Group, Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA

Received 21 February 2012; Accepted 6 May 2012

Academic Editor: Moustafa Abdel-Maksoud

Copyright © 2012 Spyros A. Kinnas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. F. van Sluijs, “Performance and propeller load fluctuations of a ship in waves,” TNO 163S, Netherlands Ship Research Centre, 1972. View at Google Scholar
  2. S. D. Jessup and R. J. Boswell, “The effect of hull pitching motions and waves on periodic propeller blade loads,” in Proceedings of the 14th Symposium on Naval Hydrodynamics, Ann Arbor, Mich, USA, 1982.
  3. M. G. Parsons and W. S. Vorus, “Added mass and damping estimates for vibrating propellers,” in Proceedings of the Propellers Symposium Transactions SNAME, Virginia Beach, Va, USA, 1981.
  4. T. Sasajima, “Usefulness of quasi-steady approach for estimation of propeller bearing forces,” in Proceedings of the Propellers Symposium Transactions SNAME, 1978. View at Scopus
  5. J. P. Breslin and P. Andersen, Hydrodynamics of Ship Propellers, Cambridge University Press, Cambridge, Mass, USA, 1st edition, 1994.
  6. H. Lee and S. A. Kinnas, “Unsteady wake alignment for propellers in nonaxisymmetric flows,” Journal of Ship Research, vol. 49, no. 3, pp. 176–190, 2005. View at Google Scholar · View at Scopus
  7. G. K. Politis, “Simulation of unsteady motion of a propeller in a fluid including free wake modeling,” Engineering Analysis with Boundary Elements, vol. 28, no. 6, pp. 633–653, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. L. He, Numerical simulation of unsteady rotor/stator interaction and application to propeller/rudder combination [Ph.D. thesis], Department of Civil Engineering, UT Austin, Austin, Tex, USA, 2010.
  9. A. Sharma, “Numerical modeling of a hydrofoil or a marine propeller undergoing unsteady motion via a panel method and RANS,” Tech. Rep. 11-02, Department of Civil Engineering, UT Austin, Austin, Tex, USA, 2011. View at Google Scholar
  10. A. Sharma, L. He, and S. A. Kinnas, “Numerical modeling of a hydrofoil or a marine propeller undergoing unsteady motion,” in Proceedings of the 2nd International Symposium on Marine Propulsors, Hamburg, Germany, 2011.
  11. S. A. Kinnas and C. Y. Hsin, “Boundary element method for the analysis of the unsteady flow around extreme propeller geometries,” AIAA Journal, vol. 30, no. 3, pp. 688–696, 1992. View at Google Scholar · View at Scopus
  12. R. J. Boswell, Design, Cavitation Performance, and Open-Water Performance of a Series of Research—Skewed Propellers, Naval Ship Research and Development Center, Department of the Navy, 1971.
  13. Y. Tian and S. A. Kinnas, “Modeling of leading edge vortex and its effects on propeller performance,” in Proceedings of the 2nd International Symposium on Marine Propulsors, Hamburg, Germany, 2011.
  14. S. A. Kinnas, S. H. Chang, Y. H. Yu, and L. He, “A hybrid viscous/potential flow method for the prediction of the performance of podded and ducted propellers,” in Proceedings of the Propeller/Shafting Symposium, Williamsburg, Va, USA, 2009.