Table of Contents Author Guidelines Submit a Manuscript
International Journal of Reproductive Medicine
Volume 2013, Article ID 603167, 16 pages
http://dx.doi.org/10.1155/2013/603167
Review Article

Metabolite Profiling in the Pursuit of Biomarkers for IVF Outcome: The Case for Metabolomics Studies

1School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
2The Leeds Centre for Reproductive Medicine, Leeds Teaching Hospitals NHS Trust, Seacroft Hospital, Leeds LS14 6UH, UK

Received 12 November 2012; Accepted 2 January 2013

Academic Editor: Anne Van Langendonckt

Copyright © 2013 C. McRae et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. HFEA Website, “About infertility,” 2012, http://www.hfea.gov.uk/infertility.html.
  2. National Institute for Clinical Excellence (NICE), “Assessment and treatment for people with fertility problems: understanding NICE guidance—information for people with fertility problems, their partners, and the public,” 2004, http://www.nice.org.uk/guidance/index.jsp?action=download&o=29271.
  3. HFEA, “Fertility treatment in 2010: trends and figures,” http://www.hfea.gov.uk/104.html.
  4. HFEA website, “Long-term trends data,” 2011, http://www.hfea.gov.uk/2585.html.
  5. J. Gunby, “Assisted reproductive technologies (ART) in Canada: 2009 results from the Canadian ART register,” http://www.cfas.ca/images/stories/pdf/CARTR_2009.pdf.
  6. S. Sunderam, D. M. Kissin, L. Flowers et al., “Assisted reproductive technology surveillance—United States, 2009,” Morbidity and Mortality Weekly Report Surveillance Summaries, vol. 61, no. 7, pp. 1–23, 2012. View at Google Scholar
  7. Y. A. Wang, A. Macaldowie, I. Hayward, G. M. Chambers, and E. A. Sullivan, Assisted Reproductive Technology in Australia and New Zealand 2009, vol. 15 of Assisted Reproduction Technology, AIHW, Canberra, Australia, 2011, Cat. no. PER 51.
  8. A. O. Trounson, J. F. Leeton, and C. Wood, “Pregnancies in humans by fertilization in vitro and embryo transfer in the controlled ovulatory cycle,” Science, vol. 212, no. 4495, pp. 681–682, 1981. View at Google Scholar · View at Scopus
  9. B. Lieberman, R. Ali, and S. Rangarajan, “Towards the elective replacement of a single embryo (eSET) in the United Kingdom,” Human Fertility, vol. 10, no. 2, pp. 123–127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. C. Walker, K. E. Murphy, S. Pan, Q. Yang, and S. W. Wen, “Adverse maternal outcomes in multifetal pregnancies,” American Journal of Obstetrics and Gynecology, vol. 111, no. 11, pp. 1294–1296, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Mistry, R. Dowie, T. A. Young, and H. M. Gardiner, “Costs of NHS maternity care for women with multiple pregnancy compared with high-risk and low-risk singleton pregnancy,” American Journal of Obstetrics and Gynecology, vol. 114, no. 9, pp. 1104–1112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. J. Mangham, S. Petrou, L. W. Doyle, E. S. Draper, and N. Marlow, “The cost of preterm birth throughout childhood in England and Wales,” Pediatrics, vol. 123, no. 2, pp. e312–e327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. HFEA Website, “Facts & figures for researchers and the media: embryo transfer and multiple births,” http://www.hfea.gov.uk/2587.html#3050.
  14. HFEA, “Improving outcomes for fertility patients: multiple births: a statistical report,” http://www.hfea.gov.uk/6456.html.
  15. A. P. Ferraretti, V. Goossens, J. de Mouzon et al., “Assisted reproductive technology in Europe, 2008: results generated from European registers by European Society of Human Reproduction and Embryology (ESHRE) dagger,” Human Reproduction, vol. 27, no. 9, pp. 2571–2584, 2012. View at Google Scholar
  16. J. K. Nicholson, J. C. Lindon, and E. Holmes, “‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data,” Xenobiotica, vol. 29, no. 11, pp. 1181–1189, 1999. View at Google Scholar · View at Scopus
  17. O. Fiehn, “Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks,” Comparative and Functional Genomics, vol. 2, no. 3, pp. 155–168, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. D. S. Wishart, “Metabolomics: the principles and potential applications to transplantation,” American Journal of Transplantation, vol. 5, no. 12, pp. 2814–2820, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. D. S. Wishart, “Proteomics and the human metabolome project,” Expert Review of Proteomics, vol. 4, no. 3, pp. 333–335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. T. Lei, D. V. Huhman, and L. W. Sumner, “Mass spectrometry strategies in metabolomics,” Journal of Biological Chemistry, vol. 286, no. 29, pp. 25435–25442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Goldsmith, H. Fenton, G. Morris-Stiff, N. Ahmad, J. Fisher, and K. R. Prasad, “Metabonomics: a useful tool for the future surgeon,” Journal of Surgical Research, vol. 160, no. 1, pp. 122–132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. W. B. Dunn, N. J. C. Bailey, and H. E. Johnson, “Measuring the metabolome: current analytical technologies,” Analyst, vol. 130, no. 5, pp. 606–625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Revelli, L. D. Piane, S. Casano, E. Molinari, M. Massobrio, and P. Rinaudo, “Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics,” Reproductive Biology and Endocrinology, vol. 7, article 40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Botros, D. Sakkas, and E. Seli, “Metabolomics and its application for non-invasive embryo assessment in IVF,” Molecular Human Reproduction, vol. 14, no. 12, pp. 679–690, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. G. Bromer, D. Sakkas, and E. Seli, “Metabolomic profiling of embryo culture media to predict IVF outcome,” Expert Review of Obstetrics and Gynecology, vol. 3, no. 4, pp. 441–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. G. Bromer and E. Seli, “Assessment of embryo viability in assisted reproductive technology: shortcomings of current approaches and the emerging role of metabolomics,” Current Opinion in Obstetrics and Gynecology, vol. 20, no. 3, pp. 234–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Sakkas and D. K. Gardner, “Noninvasive methods to assess embryo quality,” Current Opinion in Obstetrics and Gynecology, vol. 17, no. 3, pp. 283–288, 2005. View at Google Scholar · View at Scopus
  28. E. Seli, C. Robert, and M. A. Sirard, “Omics in assisted reproduction: possibilities and pitfalls,” Molecular Human Reproduction, vol. 16, no. 8, pp. 513–530, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Nel-Themaat and Z. P. Nagy, “A review of the promises and pitfalls of oocyte and embryo metabolomics,” Placenta, vol. 32, supplement 3, pp. S257–S263, 2011. View at Google Scholar
  30. S. Assou, D. Haouzi, J. de Vos, and S. Hamamah, “Human cumulus cells as biomarkers for embryo and pregnancy outcomes,” Molecular Human Reproduction, vol. 16, no. 8, pp. 531–538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. F. L. D'Alexandri, S. Scolari, and C. R. Ferreira, “Reproductive biology in the, “omics” era: what can be done?” Animal Reproduction, vol. 7, no. 3, pp. 177–186, 2010. View at Google Scholar
  32. R. Singh and K. D. Sinclair, “Metabolomics: approaches to assessing oocyte and embryo quality,” Theriogenology, vol. 68, supplement 1, pp. S56–S62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. N. E. Baskind, C. McRae, V. Sharma, and J. Fisher, “Understanding subfertility at a molecular level in the female through the application of nuclear magnetic resonance (NMR) spectroscopy,” Human Reproduction Update, vol. 17, no. 2, pp. 228–241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. J. Dawson, D. K. McFarlane, B. L. McFarlin, E. A. Noyszewski, and S. R. Trupin, “The biochemistry of female reproductive tissues studied by 31phosphorus nuclear magnetic resonance spectroscopy: effects of pregnancy, hormonal manipulation, and disease,” Biology of Reproduction, vol. 38, no. 1, pp. 31–38, 1988. View at Google Scholar · View at Scopus
  35. E. A. Noyszewski, J. Raman, S. R. Trupin, B. L. McFarlin, and M. J. Dawson, “Phosphorus 31 nuclear magnetic resonance examination of female reproductive tissues,” American Journal of Obstetrics and Gynecology, vol. 161, no. 2, pp. 282–288, 1989. View at Google Scholar · View at Scopus
  36. M. Meseguer, J. Herrero, A. Tejera, K. M. Hilligsoe, N. B. Ramsing, and J. Remohi, “The use of morphokinetics as a predictor of embryo implantation,” Human Reproduction, vol. 26, no. 10, pp. 2658–2671, 2011. View at Google Scholar
  37. M. Cruz, N. Garrido, J. Herrero, I. Perez-Cano, M. Munoz, and M. Meseguer, “Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality,” Reproductive BioMedicine Online, vol. 25, no. 4, pp. 371–381, 2012. View at Google Scholar
  38. J. P. Renard, A. Philippon, and Y. Menezo, “In-vitro uptake of glucose by bovine blastocysts,” Journal of Reproduction and Fertility, vol. 58, no. 1, pp. 161–164, 1980. View at Google Scholar · View at Scopus
  39. D. K. Gardner and H. J. Leese, “Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake,” Journal of Experimental Zoology, vol. 242, no. 1, pp. 103–105, 1987. View at Google Scholar · View at Scopus
  40. M. Van den Bergh, F. Devreker, S. Emiliani, and Y. Englert, “Glycolytic activity: a possible tool for human blastocyst selection,” Reproductive BioMedicine Online, vol. 3, supplement 1, article 8, 2001. View at Google Scholar
  41. D. K. Gardner, M. Lane, J. Stevens, and W. B. Schoolcraft, “Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential,” Fertility and Sterility, vol. 76, no. 6, pp. 1175–1180, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. F. D. Houghton, J. A. Hawkhead, P. G. Humpherson et al., “Non-invasive amino acid turnover predicts human embryo developmental capacity,” Human Reproduction, vol. 17, no. 4, pp. 999–1005, 2002. View at Google Scholar · View at Scopus
  43. D. R. Brison, F. D. Houghton, D. Falconer et al., “Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover,” Human Reproduction, vol. 19, no. 10, pp. 2319–2324, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. H. M. Picton, K. Elder, F. D. Houghton et al., “Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro,” Molecular Human Reproduction, vol. 16, no. 8, pp. 557–569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Shiku, T. Shiraishi, H. Ohya et al., “Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy,” Analytical Chemistry, vol. 73, no. 15, pp. 3751–3758, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Agung, T. Otoi, H. Abe et al., “Relationship between oxygen consumption and sex of bovine in vitro fertilized embryos,” Reproduction in Domestic Animals, vol. 40, no. 1, pp. 51–56, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. A. S. Lopes, L. H. Larsen, N. Ramsing et al., “Respiration rates of individual bovine in vitro-produced embryos measured with a novel, non-invasive and highly sensitive microsensor system,” Reproduction, vol. 130, no. 5, pp. 669–679, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. A. S. Lopes, S. E. Madsen, N. B. Ramsing, P. Løvendahl, T. Greve, and H. Callesen, “Investigation of respiration of individual bovine embryos produced in vivo and in vitro and correlation with viability following transfer,” Human Reproduction, vol. 22, no. 2, pp. 558–566, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Tejera, J. Herrero, T. Viloria, J. L. Romero, P. Gamiz, and M. Meseguer, “Time-dependent O-2 consumption patterns determined optimal time ranges for selecting viable human embryos,” Fertility and Sterility, vol. 98, no. 4, pp. 849.e1–857.e3, 2012. View at Publisher · View at Google Scholar
  50. E. Seli, D. Sakkas, R. Scott, S. C. Kwok, S. M. Rosendahl, and D. H. Burns, “Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization,” Fertility and Sterility, vol. 88, no. 5, pp. 1350–1357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Scott, E. Seli, K. Miller, D. Sakkas, K. Scott, and D. H. Burns, “Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study,” Fertility and Sterility, vol. 90, no. 1, pp. 77–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Seli, L. Botros, D. Sakkas, and D. H. Burns, “Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization,” Fertility and Sterility, vol. 90, no. 6, pp. 2183–2189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. C. G. Vergouw, L. L. Botros, P. Roos et al., “Metabolomic profiling by near-infrared spectroscopy as a tool to assess embryo viability: a novel, non-invasive method for embryo selection,” Human Reproduction, vol. 23, no. 7, pp. 1499–1504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Seli, C. G. Vergouw, H. Morita et al., “Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer,” Fertility and Sterility, vol. 94, no. 2, pp. 535–542, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. C. G. Vergouw, L. L. Botros, K. Judge et al., “Non-invasive viability assessment of day-4 frozen-thawed human embryos using near infrared spectroscopy,” Reproductive BioMedicine Online, vol. 23, no. 6, pp. 769–776, 2011. View at Google Scholar
  56. E. Seli, C. Bruce, L. Botros et al., “Receiver operating characteristic (ROC) analysis of day 5 morphology grading and metabolomic Viability Score on predicting implantation outcome,” Journal of Assisted Reproduction and Genetics, vol. 28, no. 2, pp. 137–144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Hardarson, A. Ahlstrom, L. Rogberg et al., “Non-invasive metabolomic profiling of day 2 and 5 embryo culture medium: a prospective randomized trial,” Human Reproduction, vol. 27, no. 1, pp. 89–96, 2012. View at Google Scholar
  58. F. C. Marhuenda-Egea, E. Martínez-Sabater, R. Gonsálvez-Álvarez, B. Lledó, J. Ten, and R. Bernabeu, “A crucial step in assisted reproduction technology: human embryo selection using metabolomic evaluation,” Fertility and Sterility, vol. 94, no. 2, pp. 772–774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. F. C. Marhuenda-Egea, R. Gonsálvez-Álvarez, E. Martínez-Sabater, B. Lledó, J. Ten, and R. Bernabeu, “Improving human embryos selection in IVF: non-invasive metabolomic and chemometric approach,” Metabolomics, vol. 7, no. 2, pp. 247–256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. A. D'Alessandro, G. Federica, S. Palini, C. Bulletti, and L. Zolla, “A mass spectrometry-based targeted metabolomics strategy of human blastocoele fluid: a promising tool in fertility research,” Molecular Biosystems, vol. 8, no. 4, pp. 953–958, 2012. View at Google Scholar
  61. P. Blondin and M. A. Sirard, “Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes,” Molecular Reproduction and Development, vol. 41, no. 1, pp. 54–62, 1995. View at Google Scholar · View at Scopus
  62. M. Nagano, S. Katagiri, and Y. Takahashi, “Relationship between bovine oocyte morphology and in vitro developmental potential,” Zygote, vol. 14, no. 1, pp. 53–61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. P. F. Serhal, D. M. Ranieri, A. Kinis, S. Marchant, M. Davies, and I. M. Khadum, “Oocyte morphology predicts outcome of intracytoplasmic sperm injection,” Human Reproduction, vol. 12, no. 6, pp. 1267–1270, 1997. View at Google Scholar · View at Scopus
  64. T. Ebner, M. Moser, C. Yaman, O. Feichtinger, J. Hartl, and G. Tews, “Elective transfer of embryos selected on the basis of first polar body morphology is associated with increased rates of implantation and pregnancy,” Fertility and Sterility, vol. 72, no. 4, pp. 599–603, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Ebner, C. Yaman, M. Moser, M. Sommergruber, O. Feichtinger, and G. Tews, “Prognostic value of first polar body morphology on fertilization rate and embryo quality in intracytoplasmic sperm injection,” Human Reproduction, vol. 15, no. 2, pp. 427–430, 2000. View at Google Scholar · View at Scopus
  66. P. Xia, “Intracytoplasmic sperm injection: correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality,” Human Reproduction, vol. 12, no. 8, pp. 1750–1755, 1997. View at Publisher · View at Google Scholar · View at Scopus
  67. W. H. Wang, L. Meng, R. J. Hackett, R. Odenbourg, and D. L. Keefe, “The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes,” Fertility and Sterility, vol. 75, no. 2, pp. 348–353, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. J. H. Moon, C. S. Hyun, S. W. Lee, W. Y. Son, S. H. Yoon, and J. H. Lim, “Visualization of the metaphase II meiotic spindle in living human oocytes using the polscope enables the prediction of embryonic developmental competence after ICSI,” Human Reproduction, vol. 18, no. 4, pp. 817–820, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Bertrand, M. Van den Bergh, and Y. Englert, “Does zona pellucida thickness influence the fertilization rate?” Human Reproduction, vol. 10, no. 5, pp. 1189–1193, 1995. View at Google Scholar · View at Scopus
  70. R. Vassena, R. J. Mapletoft, S. Allodi, J. Singh, and G. P. Adams, “Morphology and developmental competence of bovine oocytes relative to follicular status,” Theriogenology, vol. 60, no. 5, pp. 923–932, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. M. D. Varisanga, C. Sumantri, M. Murakami, M. Fahrudin, and T. Suzuki, “Morphological classification of the ovaries in relation to the subsequent oocyte quality for IV-produced bovine embryos,” Theriogenology, vol. 50, no. 7, pp. 1015–1023, 1998. View at Publisher · View at Google Scholar · View at Scopus
  72. Q. Wang and Q. Y. Sun, “Evaluation of oocyte quality: morphological, cellular and molecular predictors,” Reproduction, Fertility and Development, vol. 19, no. 1, pp. 1–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. T. A. Santos, S. El Shourbagy, and J. C. S. John, “Mitochondrial content reflects oocyte variability and fertilization outcome,” Fertility and Sterility, vol. 85, no. 3, pp. 584–591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. T. C. Gibson, H. M. Kubisch, and C. A. Brenner, “Mitochondrial DNA deletions in rhesus macaque oocytes and embryos,” Molecular Human Reproduction, vol. 11, no. 11, pp. 785–789, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. H. K. Au, T. S. Yeh, S. H. Kao, C. R. Tzeng, and R. H. Hsieh, “Abnormal mitochondrial structure in human unfertilized oocytes and arrested embryos,” Annals of the New York Academy of Sciences, vol. 1042, pp. 177–185, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Van Blerkom and M. N. Runner, “Mitochondrial reorganization during resumption of arrested meiosis in the mouse oocyte,” American Journal of Anatomy, vol. 171, no. 3, pp. 335–355, 1984. View at Google Scholar · View at Scopus
  77. H. Alm, H. Torner, B. Löhrke, T. Viergutz, I. M. Ghoneim, and W. Kanitz, “Bovine blastocyst development rate in vitro is influenced by selection of oocytes by brillant cresyl blue staining before IVM as indicator for glucose-6-phosphate dehydrogenase activity,” Theriogenology, vol. 63, no. 8, pp. 2194–2205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. K. A. Preis, G. Seidel, and D. K. Gardner, “Metabolic markers of developmental competence for in vitro-matured mouse oocytes,” Reproduction, vol. 130, no. 4, pp. 475–483, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. S. E. Harris, H. J. Leese, R. G. Gosden, and H. M. Picton, “Pyruvate and oxygen consumption throughout the growth and development of murine oocytes,” Molecular Reproduction and Development, vol. 76, no. 3, pp. 231–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. S. E. Harris, I. Adriaens, H. J. Leese, R. G. Gosden, and H. M. Picton, “Carbohydrate metabolism by murine ovarian follicles and oocytes grown in vitro,” Reproduction, vol. 134, no. 3, pp. 415–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. S. E. Harris, N. Gopichandran, H. M. Picton, H. J. Leese, and N. M. Orsi, “Nutrient concentrations in murine follicular fluid and the female reproductive tract,” Theriogenology, vol. 64, no. 4, pp. 992–1006, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. N. M. Orsi, N. Gopichandran, H. J. Leese, H. M. Picton, and S. E. Harris, “Fluctuations in bovine ovarian follicular fluid composition throughout the oestrous cycle,” Reproduction, vol. 129, no. 2, pp. 219–228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. S. E. Harris, D. Maruthini, T. Tang, A. H. Balen, and H. M. Picton, “Metabolism and karyotype analysis of oocytes from patients with polycystic ovary syndrome,” Human Reproduction, vol. 25, no. 9, pp. 2305–2315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. K. E. Hemmings, H. J. Leese, and H. M. Picton, “Amino acid turnover by bovine oocytes provides an index of oocyte developmental competence in vitro,” Biology of Reproduction, vol. 86, no. 5, pp. 165–112, 2012. View at Google Scholar
  85. L. Scott, J. Berntsen, D. Davies, J. Gundersen, J. Hill, and N. Ramsing, “Human oocyte respiration-rate measurement—potential to improve oocyte and embryo selection?” Reproductive BioMedicine Online, vol. 17, no. 4, pp. 461–469, 2008. View at Google Scholar · View at Scopus
  86. A. Tejera, J. Herrero, M. J. de los Santos, N. Garrido, N. Ramsing, and M. Meseguer, “Oxygen consumption is a quality marker for human oocyte competence conditioned by ovarian stimulation regimens,” Fertility and Sterility, vol. 96, no. 3, pp. U618–U141, 2011. View at Google Scholar
  87. E. B. Baart, E. Martini, M. J. Eijkemans et al., “Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial,” Human Reproduction, vol. 22, no. 4, pp. 980–988, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Toledano, F. Lamazou, V. Gallot, R. Frydman, R. Fanchin, and M. Grynberg, “Are mild ovarian stimulations for IVF-ET a significant progress in assisted reproductive technologies?” Journal De Gynecologie Obstetrique Et Biologie de La Reproduction, vol. 41, no. 1, pp. 6–13, 2012. View at Google Scholar
  89. A. Revelli, S. Casano, F. Salvagno, and L. Delle Piane, “Milder is better? advantages and disadvantages of “mild” ovarian stimulation for human in vitro fertilization,” Reproductive Biology and Endocrinology, vol. 9, article 25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. N. Gleicher, A. Weghofer, and D. H. Barad, “A case-control pilot study of low-intensity IVF in good-prognosis patients,” Reproductive BioMedicine Online, vol. 24, no. 4, pp. 396–402, 2012. View at Google Scholar
  91. ESHRE. Press releases 2012: ESHRE, 2012, “Freezing all embryos in IVF with transfer in a later non-stimulated cycle may improve outcome,” 2012, http://www.eshre.eu/eshre/english/press-room/press-releases/press-releases-2012/eshre-2012/frozen-vs-fresh-embryos/page.aspx/1620.
  92. B. S. Shapiro, S. T. Daneshmand, F. C. Garner, M. Aguirre, C. Hudson, and S. Thomas, “Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders,” Fertility and Sterility, vol. 96, no. 2, pp. 344–348, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. Genea Website, “Genea announces a world-first trial of freeze-all IVF,” 2012, http://blog.Myivfblogs.Com/2012/06/embryos-on-ice-genea-announces-a-world-first-trial-of-freeze-all-ivf.
  94. E. M. Chang, J. E. Han, Y. S. Kim, S. W. Lyu, W. S. Lee, and T. K. Yoon, “Use of the natural cycle and vitrification thawed blastocyst transfer results in better in-vitro fertilization outcomes: cycle regimens of vitrification thawed blastocyst transfer,” Journal of Assisted Reproduction and Genetics, vol. 28, no. 4, pp. 369–374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. C. Y. Andersen, “Characteristics of human follicular fluid associated with successful conception after in vitro fertilization,” Journal of Clinical Endocrinology and Metabolism, vol. 77, no. 5, pp. 1227–1234, 1993. View at Publisher · View at Google Scholar · View at Scopus
  96. L. T. Mercé, S. Bau, M. J. Barco et al., “Assessment of the ovarian volume, number and volume of follicles and ovarian vascularity by three-dimensional ultrasonography and power Doppler angiography on the HCG day to predict the outcome in IVF/ICSI cycles,” Human Reproduction, vol. 21, no. 5, pp. 1218–1226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. W. Botero-Ruiz, N. Laufer, and A. H. DeCherney, “The relationship between follicular fluid steroid concentration and successful fertilization of human oocyte in vitro,” Fertility and Sterility, vol. 41, no. 6, pp. 820–826, 1984. View at Google Scholar · View at Scopus
  98. T. Kobayashi, T. Oda, Y. Yoshimura, Y. Takehara, M. Natori, and S. Nozawa, “Androstenedione and progesterone concentrations in preovulatory follicular fluid correlate with successful fertilization and cleavage of human oocytes in vitro,” Fertility and Sterility, vol. 56, no. 2, pp. 301–305, 1991. View at Google Scholar · View at Scopus
  99. M. S. Lee, Z. Ben-Rafael, F. Meloni, L. Mastroianni, and G. L. Flickinger, “Relationship of human oocyte maturity, fertilization, and cleavage to follicular fluid prolactin and steroids,” Journal of in Vitro Fertilization and Embryo Transfer, vol. 4, no. 3, pp. 168–172, 1987. View at Publisher · View at Google Scholar · View at Scopus
  100. A. Reinthaller, J. Deutinger, P. Riss et al., “Relationship between the steroid and prolactin concentration in follicular fluid and the maturation and fertilizaton of human oocytes,” Journal of In Vitro Fertilization and Embryo Transfer, vol. 4, no. 4, pp. 228–231, 1987. View at Publisher · View at Google Scholar · View at Scopus
  101. B. C. Tarlatzis, N. Laufer, and A. H. DeCherney, “Adenosine 3′,5′-monophosphate levels in human follicular fluid: relationship to oocyte maturation and achievement of pregnancy after in vitro fertilization,” Journal of Clinical Endocrinology and Metabolism, vol. 60, no. 6, pp. 1111–1115, 1985. View at Google Scholar · View at Scopus
  102. C. Mendoza, E. Ruiz-Requena, E. Ortega et al., “Follicular fluid markers of oocyte developmental potential,” Human Reproduction, vol. 17, no. 4, pp. 1017–1022, 2002. View at Google Scholar · View at Scopus
  103. R. Basuray, R. G. Rawlins, E. Radwanska et al., “High progesterone/estradiol ratio in follicular fluid at oocyte aspiration for in vitro fertilization as a predictor of possible pregnancy,” Fertility and Sterility, vol. 49, no. 6, pp. 1007–1011, 1988. View at Google Scholar · View at Scopus
  104. Z. Ben-Rafael, F. Meloni, and J. F. Strauss, “Relationships between polypronuclear fertilization and follicular fluid hormones in gonadotropin-treated women,” Fertility and Sterility, vol. 47, no. 2, pp. 284–288, 1987. View at Google Scholar · View at Scopus
  105. C. Lindner, V. Lichtenberg, G. Westhof, W. Braendle, and G. Bettendorf, “Endocrine parameters of human follicular fluid and fertilization capacity of oocytes,” Hormone and Metabolic Research, vol. 20, no. 4, pp. 243–246, 1988. View at Google Scholar · View at Scopus
  106. I. E. Messinis and A. A. Templeton, “Relationship between intrafollicular levels of prolactin and sex steroids and in-vitro fertilization of human oocytes,” Human Reproduction, vol. 2, no. 7, pp. 607–609, 1987. View at Google Scholar · View at Scopus
  107. T. Oda, Y. Yoshimura, Y. Izumi et al., “The effect of the follicular fluid adenosine 3′,5′-monophosphate degradation rate on successful fertilization and cleavage of human oocytes,” Journal of Clinical Endocrinology and Metabolism, vol. 71, no. 1, pp. 116–121, 1990. View at Google Scholar · View at Scopus
  108. B. Rosenbusch, M. Djalali, and K. Sterzik, “Is there any correlation between follicular fluid hormone concentrations, fertilizability, and cytogenetic analysis of human oocytes recovered for in vitro fertilization?” Fertility and Sterility, vol. 57, no. 6, pp. 1358–1360, 1992. View at Google Scholar · View at Scopus
  109. E. Suchanek, V. Simunic, E. Macas, B. Kopjar, and V. Grizelj, “Prostaglandin F(2α), progesterone and estradiol concentrations in human follicular fluid and their relation to success of in vitro fertilization,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 28, no. 4, pp. 331–339, 1988. View at Google Scholar · View at Scopus
  110. B. Asimakopoulos, D. Abu-Hassan, E. Metzen, S. Al-Hasani, K. Diedrich, and N. Nikolettos, “The levels of steroid hormones and cytokines in individual follicles are not associated with the fertilization outcome after intracytoplasmic sperm injection,” Fertility and Sterility, vol. 90, no. 1, pp. 60–64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. G. Fried, K. Remaeus, J. Harlin et al., “Inhibin B predicts oocyte number and the ratio IGF-I/IGFBP-1 may indicate oocyte quality during ovarian hyperstimulation for in vitro fertilization,” Journal of Assisted Reproduction and Genetics, vol. 20, no. 5, pp. 167–176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. C. L. Chang, T. H. Wang, S. G. Horng, H. M. Wu, H. S. Wang, and Y. K. Soong, “The concentration of inhibin B in follicular fluid: relation to oocyte maturation and embryo development,” Human Reproduction, vol. 17, no. 7, pp. 1724–1728, 2002. View at Google Scholar · View at Scopus
  113. G. De Placido, C. Alviggi, R. Clarizia et al., “Intra-follicular leptin concentration as a predictive factor for in vitro oocyte fertilization in assisted reproductive techniques,” Journal of Endocrinological Investigation, vol. 29, no. 8, pp. 719–726, 2006. View at Google Scholar · View at Scopus
  114. C. S. Mantzoros, D. W. Cramer, R. F. Liberman, and R. L. Barbieri, “Predictive value of serum and follicular fluid leptin concentrations during assisted reproductive cycles in normal women and in women with the polycystic ovarian syndrome,” Human Reproduction, vol. 15, no. 3, pp. 539–544, 2000. View at Google Scholar · View at Scopus
  115. I. Heimler, R. G. Rawlins, Z. Binor, J. Aiman, H. Raft, and R. J. Hutz, “Elevated follicular fluid angiotensin II and pregnancy outcome,” Fertility and Sterility, vol. 63, no. 3, pp. 528–534, 1995. View at Google Scholar · View at Scopus
  116. C. Takahashi, A. Fujito, M. Kazuka, R. Sugiyama, H. Ito, and K. Isaka, “Anti-mullerian hormone substance from follicular fluid is positively associated with success in oocyte fertilization during in vitro fertilization,” Fertility and Sterility, vol. 89, no. 3, pp. 586–591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Cupisti, R. Dittrich, A. Mueller et al., “Correlations between anti-mullerian hormone, inhibin B, and activin A in follicular fluid in IVF/ICSI patients for assessing the maturation and developmental potential of oocytes,” European Journal of Medical Research, vol. 12, no. 12, pp. 604–608, 2007. View at Google Scholar · View at Scopus
  118. N. Lédée, R. Lombroso, L. Lombardelli et al., “Cytokines and chemokines in follicular fluids and potential of the corresponding embryo: the role of granulocyte colony-stimulating factor,” Human Reproduction, vol. 23, no. 9, pp. 2001–2009, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Bedaiwy, A. Y. Shahin, A. M. AbulHassan et al., “Differential expression of follicular fluid cytokines: relationship to subsequent pregnancy in IVF cycles,” Reproductive BioMedicine Online, vol. 15, no. 3, pp. 321–325, 2007. View at Google Scholar · View at Scopus
  120. H. Bili, B. C. Tarlatzis, M. Daniilidis et al., “Cytokines in the human ovary: presence in follicular fluid and correlation with leukotriene B-4,” Journal of Assisted Reproduction and Genetics, vol. 15, no. 2, pp. 93–98, 1998. View at Google Scholar
  121. Z. Cerkiene, A. Eidukaite, and A. Usoniene, “Follicular fluid levels of interleukin-10 and interferon-gamma do not predict outcome of assisted reproductive technologies,” American Journal of Reproductive Immunology, vol. 59, no. 2, pp. 118–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. E. Geva, J. B. Lessing, L. Lerner-Geva et al., “Interleukin-10 in preovulatory follicular fluid of patients undergoing in-vitro fertilization and embryo transfer,” American Journal of Reproductive Immunology, vol. 37, no. 2, pp. 187–190, 1997. View at Google Scholar · View at Scopus
  123. F. Facchinetti, P. G. Artini, M. Monaco, A. Volpe, and A. R. Genazzani, “Oocyte fertilization in vitro is associated with high follicular immunoreactive β-endorphin levels,” Journal of Endocrinological Investigation, vol. 12, no. 10, pp. 693–698, 1989. View at Google Scholar · View at Scopus
  124. J. Hanrieder, A. Nyakas, T. Naessén, and J. Bergquist, “Proteomic analysis of human follicular fluid using an alternative bottom-up approach,” Journal of Proteome Research, vol. 7, no. 1, pp. 443–449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. Y. T. Wu, L. Tang, J. Cai et al., “High bone morphogenetic protein-15 level in follicular fluid is associated with high quality oocyte and subsequent embryonic development,” Human Reproduction, vol. 22, no. 6, pp. 1526–1531, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. D. Imoedemhe and R. W. Shaw, “Follicular fluid α1-antitrypsin—correlation with fertilizing capacity of oocytes,” British Journal of Obstetrics and Gynaecology, vol. 93, no. 8, pp. 863–868, 1986. View at Google Scholar · View at Scopus
  127. P. Jimena, J. A. Castilla, J. P. Ramirez et al., “Follicular fluid α-fetoprotein, carcinoembryonic antigen, and CA-125 levels in relation to in vitro fertilization and gonadotropin and steroid hormone concentrations,” Fertility and Sterility, vol. 59, no. 6, pp. 1257–1260, 1993. View at Google Scholar · View at Scopus
  128. A. Malamitsi-Puchner, A. Sarandakou, S. Baka, N. Vrachnis, E. Kouskouni, and D. Hassiakos, “Soluble Fas concentrations in the follicular fluid and oocyte-cumulus complex culture medium from women undergoing in vitro fertilization: association with oocyte maturity, fertilization, and embryo quality,” Journal of the Society for Gynecologic Investigation, vol. 11, no. 8, pp. 566–569, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. S. J. Estes, B. Ye, W. Qiu, D. Cramer, M. D. Hornstein, and S. A. Missmer, “A proteomic analysis of IVF follicular fluid in women ≤32 years old,” Fertility and Sterility, vol. 92, no. 5, pp. 1569–1578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. T. Von Wald, Y. Monisova, M. R. Hacker et al., “Age-related variations in follicular apolipoproteins may influence human oocyte maturation and fertility potential,” Fertility and Sterility, vol. 93, no. 7, pp. 2354–2361, 2010. View at Google Scholar · View at Scopus
  131. J. C. Boxmeer, N. S. MacKlon, J. Lindemans et al., “IVF outcomes are associated with biomarkers of the homocysteine pathway in monofollicular fluid,” Human Reproduction, vol. 24, no. 5, pp. 1059–1066, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. P. Ocal, B. Ersoylu, I. Cepni et al., “The association between homocysteine in the follicular fluid with embryo quality and pregnancy rate in assisted reproductive techniques,” Journal of Assisted Reproduction and Genetics, vol. 29, no. 4, pp. 299–304, 2012. View at Google Scholar
  133. T. T. Y. Chiu, M. S. Rogers, E. L. K. Law, C. M. Briton-Jones, L. P. Cheung, and C. J. Haines, “Follicular fluid and serum concentrations of myo-inositol in patients undergoing IVF: relationship with oocyte quality,” Human Reproduction, vol. 17, no. 6, pp. 1591–1596, 2002. View at Google Scholar · View at Scopus
  134. G. D'Aniello, N. Grieco, M. A. Di Filippo et al., “Reproductive implication of D-aspartic acid in human pre-ovulatory follicular fluid,” Human Reproduction, vol. 22, no. 12, pp. 3178–3183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. K. D. Sinclair, L. A. Lunn, W. Y. Kwong, K. Wonnacott, R. S. T. Linforth, and J. Craigon, “Amino acid and fatty acid composition of follicular fluid as predictors of in-vitro embryo development,” Reproductive BioMedicine Online, vol. 16, no. 6, pp. 859–868, 2008. View at Google Scholar · View at Scopus
  136. J. Otsuki, Y. Nagai, Y. Matsuyama, T. Terada, and S. Era, “The influence of the redox state of follicular fluid albumin on the viability of aspirated human oocytes,” Systems Biology in Reproductive Medicine, vol. 58, no. 3, pp. 149–153, 2012. View at Google Scholar
  137. M. A. Bedaiwy, S. A. El-Nashar, J. M. Goldberg et al., “Effect of follicular fluid oxidative stress parameters on intracytoplasmic sperm injection outcome,” Gynecological Endocrinology, vol. 28, no. 1, pp. 51–55, 2012. View at Google Scholar
  138. T. H. Lee, M. Y. Wu, M. J. Chen, K. H. Chao, H. N. Ho, and Y. S. Yang, “Nitric oxide is associated with poor embryo quality and pregnancy outcome in in vitro fertilization cycles,” Fertility and Sterility, vol. 82, no. 1, pp. 126–131, 2004. View at Publisher · View at Google Scholar · View at Scopus
  139. M. J. Barrionuevo, R. A. Schwandt, P. S. Rao, L. B. Graham, L. P. Maisel, and T. R. Yeko, “Nitric oxide (NO) and interleukin-1β (IL-1β) in follicular fluid and their correlation with fertilization and embryo cleavage,” American Journal of Reproductive Immunology, vol. 44, no. 6, pp. 359–364, 2000. View at Publisher · View at Google Scholar · View at Scopus
  140. G. Barroso, M. Barrionuevo, P. Rao et al., “Vascular endothelial growth factor, nitric oxide, and leptin follicular fluid levels correlate negatively with embryo quality in IVF patients,” Fertility and Sterility, vol. 72, no. 6, pp. 1024–1026, 1999. View at Publisher · View at Google Scholar · View at Scopus
  141. S. M. Pancarci, U. C. Ari, O. Atakisi, O. Gungor, Y. Cigremis, and H. Bollwein, “Nitric oxide concentrations, estradiol-17 beta progesterone ratio in follicular fluid, and COC quality with respect to perifollicular blood flow in cows,” Animal Reproduction Science, vol. 130, no. 1-2, pp. 9–15, 2012. View at Google Scholar
  142. K. S. Lee, B. S. Joo, Y. J. Na, M. S. Yoon, O. H. Choi, and W. W. Kim, “Relationships between concentrations of tumor necrosis factor-α and nitric oxide in follicular fluid and oocyte quality,” Journal of Assisted Reproduction and Genetics, vol. 17, no. 4, pp. 222–228, 2000. View at Publisher · View at Google Scholar · View at Scopus
  143. D. Manau, J. Balasch, W. Jiménez et al., “Follicular fluid concentrations of adrenomedullin, vascular endothelial growth factor and nitric oxide in IVF cycles: relationship to ovarian response,” Human Reproduction, vol. 15, no. 6, pp. 1295–1299, 2000. View at Google Scholar · View at Scopus
  144. B. Berker, C. Kaya, R. Aytac, and H. Satiroglu, “Homocysteine concentrations in follicular fluid are associated with poor oocyte and embryo qualities in polycystic ovary syndrome patients undergoing assisted reproduction,” Human Reproduction, vol. 24, no. 9, pp. 2293–2302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. N. Yilmaz, D. Uygur, M. Dogan, E. Ozgu, B. Salman, and L. Mollamahmutoglu, “The effect of follicular antimullerian hormone levels of non-obese, non-hyperandrogenemic polycystic ovary syndrome patients on assisted reproduction outcome,” Gynecological Endocrinology, vol. 28, no. 3, pp. 162–165, 2012. View at Google Scholar
  146. B. K. Arya, A. Ul Haq, and K. Chaudhury, “Oocyte quality reflected by follicular fluid analysis in poly cystic ovary syndrome (PCOS): a hypothesis based on intermediates of energy metabolism,” Medical Hypotheses, vol. 78, no. 4, pp. 475–478, 2012. View at Google Scholar
  147. E. Warzych, A. Cieslak, P. Pawlak, N. Renska, E. Pers-Kamczyc, and D. Lechniak, “Maternal nutrition affects the composition of follicular fluid and transcript content in gilt oocytes,” Veterinarni Medicina, vol. 56, no. 4, pp. 156–167, 2011. View at Google Scholar · View at Scopus
  148. J. Twigt, R. P. Steegers-Theunissen, K. Bezstarosti, and J. A. A. Demmers, “Proteomic analysis of the microenvironment of developing oocytes,” Proteomics, vol. 12, no. 9, pp. 1463–1471, 2012. View at Google Scholar
  149. K. Bender, S. Walsh, A. C. O. Evans, T. Fair, and L. Brennan, “Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows,” Reproduction, vol. 139, no. 6, pp. 1047–1055, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. E. M. L. Petro, J. Leroy, A. Covaci et al., “Endocrine-disrupting chemicals in human follicular fluid impair in vitro oocyte developmental competence,” Human Reproduction, vol. 27, no. 4, pp. 1025–1033, 2012. View at Google Scholar
  151. M. Wallace, E. Cottell, M. J. Gibney, F. M. McAuliffe, M. Wingfield, and L. Brennan, “An investigation into the relationship between the metabolic profile of follicular fluid, oocyte developmental potential, and implantation outcome,” Fertility and Sterility, vol. 97, no. 5, pp. 1078–1084, 2012. View at Google Scholar
  152. M. J. de los Santos, V. Garcia-Laez, D. Beltran-Torregrosa et al., “Hormonal and molecular characterization of follicular fluid, cumulus cells and oocytes from pre-ovulatory follicles in stimulated and unstimulated cycles,” Human Reproduction, vol. 27, no. 6, pp. 1596–1605, 2012. View at Google Scholar
  153. W. M. Enien, S. El Sahwy, C. P. Harris, M. W. Seif, and M. Elstein, “Human chorionic gonadotrophin and steroid concentrations in follicular fluid: the relationship to oocyte maturity and fertilization rates in stimulated and natural in-vitro fertilization cycles,” Human Reproduction, vol. 10, no. 11, pp. 2840–2844, 1995. View at Google Scholar · View at Scopus
  154. C. McRae, N. E. Baskind, N. M. Orsi, V. Sharma, and J. Fisher, “Metabolic profiling of follicular fluid and plasma from natural cycle in vitro fertilization patients-a pilot study',” Fertility and Sterility, vol. 98, no. 6, pp. e1449–e1457, 2012. View at Google Scholar
  155. J. L. M. R. Leroy, T. Vanholder, J. R. Delanghe et al., “Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows,” Animal Reproduction Science, vol. 80, no. 3-4, pp. 201–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. F. Moreira, F. F. Paula-Lopes, P. J. Hansen, L. Badinga, and W. W. Thatcher, “Effects of growth hormone and insulin-like growth factor-I on development of in vitro derived bovine embryos,” Theriogenology, vol. 57, no. 2, pp. 895–907, 2002. View at Publisher · View at Google Scholar · View at Scopus
  157. A. T. Byrne, J. Southgate, D. R. Brison, and H. J. Leese, “Regulation of apoptosis in the bovine blastocyst by insulin and the insulin-like growth factor (IGF) superfamily,” Molecular Reproduction and Development, vol. 62, no. 4, pp. 489–495, 2002. View at Publisher · View at Google Scholar · View at Scopus
  158. A. V. Makarevich and M. Markkula, “Apoptosis and cell proliferation potential of bovine embryos stimulated with insulin-like growth factor I during in vitro maturation and culture,” Biology of Reproduction, vol. 66, no. 2, pp. 386–392, 2002. View at Google Scholar · View at Scopus
  159. M. A. Velazquez, M. Newman, M. F. Christie et al., “The usefulness of a single measurement of insulin-like growth factor-1 as a predictor of embryo yield and pregnancy rates in a bovine MOET program,” Theriogenology, vol. 64, no. 9, pp. 1977–1994, 2005. View at Publisher · View at Google Scholar · View at Scopus
  160. A. Gradela, C. R. Esper, and A. A. Rosa-e-Silva, “Relationship between plasma 17-beta estradiol on the day of estrus and number of viable embryos in Bos indicus (Nellore) cows superovulated with FSH,” Brazilian Journal of Medical and Biological Research, vol. 27, no. 7, pp. 1663–1668, 1994. View at Google Scholar · View at Scopus
  161. A. L. Souza, G. Galeati, A. P. Almeida et al., “Embryo production in superovulated goats treated with insulin before or after mating or by continuous propylene glycol supplementation,” Reproduction in Domestic Animals, vol. 43, no. 2, pp. 218–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  162. J. Kurykin, A. Waldmann, T. Tiirats, T. Kaart, and U. Jaakma, “Morphological quality of oocytes and blood plasma metabolites in repeat breeding and early lactation dairy cows,” Reproduction in Domestic Animals, vol. 46, no. 2, pp. 253–260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  163. F. A. Ferreira, R. G. G. Gomez, D. C. Joaquim et al., “Short-term urea feeding decreases in vitro hatching of bovine blastocysts,” Theriogenology, vol. 76, no. 2, pp. 312–319, 2011. View at Publisher · View at Google Scholar · View at Scopus
  164. J. L. M. R. Leroy, T. Vanholder, B. Mateusen et al., “Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro,” Reproduction, vol. 130, no. 4, pp. 485–495, 2005. View at Publisher · View at Google Scholar · View at Scopus
  165. R. Jorritsma, M. L. César, J. T. Hermans, C. L. J. J. Kruitwagen, P. L. A. M. Vos, and T. A. M. Kruip, “Effects of non-esterified fatty acids on bovine granulosa cells and developmental potential of oocytes in vitro,” Animal Reproduction Science, vol. 81, no. 3-4, pp. 225–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  166. T. Vanholder, J. L. M. R. Leroy, A. Van Soom et al., “Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro,” Animal Reproduction Science, vol. 87, no. 1-2, pp. 33–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  167. Y. M. Mu, T. Yanase, Y. Nishi et al., “Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells,” Endocrinology, vol. 142, no. 8, pp. 3590–3597, 2001. View at Publisher · View at Google Scholar · View at Scopus
  168. A. A. Fouladi-Nashta, K. E. Wonnacott, C. G. Gutierrez et al., “Oocyte quality in lactating dairy cows fed on high levels of n-3 and n-6 fatty acids,” Reproduction, vol. 138, no. 5, pp. 771–781, 2009. View at Publisher · View at Google Scholar · View at Scopus
  169. A. A. Fouladi-Nashta, C. G. Gutierrez, J. G. Gong, P. C. Garnsworthy, and R. Webb, “Impact of dietary fatty acids on oocyte quality and development in lactating dairy cows,” Biology of Reproduction, vol. 77, no. 1, pp. 9–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  170. T. R. Bilby, J. Block, B. C. Do Amaral et al., “Effects of dietary unsaturated fatty acids on oocyte quality and follicular development in lactating dairy cows in summer,” Journal of Dairy Science, vol. 89, no. 10, pp. 3891–3903, 2006. View at Google Scholar · View at Scopus
  171. G. Thangavelu, M. G. Colazo, D. J. Ambrose, M. Oba, E. K. Okine, and M. K. Dyck, “Diets enriched in unsaturated fatty acids enhance early embryonic development in lactating Holstein cows,” Theriogenology, vol. 68, no. 7, pp. 949–957, 2007. View at Publisher · View at Google Scholar · View at Scopus
  172. K. Majumder, T. A. Gelbaya, I. Laing, and L. G. Nardo, “The use of anti-mullerian hormone and antral follicle count to predict the potential of oocytes and embryos,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 150, no. 2, pp. 166–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  173. T. Silberstein, D. T. MacLaughlin, I. Shai et al., “Mullerian inhibiting substance levels at the time of HCG administration in IVF cycles predict both ovarian reserve and embryo morphology,” Human Reproduction, vol. 21, no. 1, pp. 159–163, 2006. View at Publisher · View at Google Scholar · View at Scopus
  174. T. Ebner, M. Sommergruber, M. Moser, O. Shebl, E. Schreier-Lechner, and G. Tews, “Basal level of anti-mullerian hormone is associated with oocyte quality in stimulated cycles,” Human Reproduction, vol. 21, no. 8, pp. 2022–2026, 2006. View at Publisher · View at Google Scholar · View at Scopus
  175. S. Lee, S. Ozkavukcu, E. Heytens, F. Moy, R. M. Alappat, and K. Oktay, “Anti-mullerian hormone and antral follicle count as predictors for embryo/oocyte cryopreservation cycle outcomes in breast cancer patients stimulated with letrozole and follicle stimulating hormone,” Journal of Assisted Reproduction and Genetics, vol. 28, no. 7, pp. 651–656, 2011. View at Google Scholar
  176. E. S. Sills, G. S. Collins, A. C. Brady et al., “Bivariate analysis of basal serum anti-mullerian hormone measurements and human blastocyst development after IVF,” Reproductive Biology and Endocrinology, vol. 9, article 5, 2011. View at Google Scholar
  177. E. A. Elgindy, D. O. El-Haieg, and A. El-Sebaey, “Anti-mullerian hormone: correlation of early follicular, ovulatory and midluteal levels with ovarian response and cycle outcome in intracytoplasmic sperm injection patients,” Fertility and Sterility, vol. 89, no. 6, pp. 1670–1676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  178. D. Monniaux, S. Barbey, C. Rico, S. Fabre, Y. Gallard, and H. Larroque, “Anti-Mllerian hormone: a predictive marker of embryo production in cattle?” Reproduction, Fertility and Development, vol. 22, no. 7, pp. 1083–1091, 2010. View at Publisher · View at Google Scholar · View at Scopus
  179. D. Monniaux, G. Baril, A. L. Laine et al., “Anti-mullerian hormone as a predictive endocrine marker for embryo production in the goat,” Reproduction, vol. 142, no. 6, pp. 845–854, 2011. View at Google Scholar
  180. E. Caroppo, M. Matteo, L. M. Schonauer et al., “Basal FSH concentration as a predictor of IVF outcome in older women undergoing stimulation with GnRH antagonist,” Reproductive BioMedicine Online, vol. 13, no. 6, pp. 815–820, 2006. View at Google Scholar · View at Scopus
  181. F. J. Schweigert, B. Gericke, W. Wolfram, U. Kaisers, and J. W. Dudenhausen, “Peptide and protein profiles in serum and follicular fluid of women undergoing IVF,” Human Reproduction, vol. 21, no. 11, pp. 2960–2968, 2006. View at Publisher · View at Google Scholar · View at Scopus
  182. K. Haller-Kikkatalo, A. Sarapik, G. C. Faure et al., “Serum strem-1 (soluble triggering receptor expressed on myeloid cells-1) associates negatively with embryo quality in infertility patients,” American Journal of Reproductive Immunology, vol. 68, no. 1, pp. 68–74, 2012. View at Google Scholar
  183. L. Y. Sun, W. H. Hu, Q. Liu et al., “Metabonomics reveals plasma metabolic changes and inflammatory marker in polycystic ovary syndrome patients,” Journal of Proteome Research, vol. 11, no. 5, pp. 2937–2946, 2012. View at Google Scholar
  184. W. Atiomo and C. A. Daykin, “Metabolomic biomarkers in women with polycystic ovary syndrome: a pilot study,” Molecular Human Reproduction, vol. 18, no. 11, pp. 546–553, 2012. View at Publisher · View at Google Scholar
  185. S. Barrett and C. Taylor, “A review on pelvic inflammatory disease,” International Journal of STD and AIDS, vol. 16, no. 11, pp. 715–721, 2005. View at Publisher · View at Google Scholar · View at Scopus
  186. H. T. Tsai, P. H. Su, T. H. Lee et al., “Significant elevation and correlation of plasma neutrophil gelatinase associated lipocalin and its complex with matrix metalloproteinase-9 in patients with pelvic inflammatory disease,” Clinica Chimica Acta, vol. 412, no. 13-14, pp. 1252–1256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  187. W. D. Hager, D. A. Eschenbach, M. R. Spence, and R. L. Sweet, “Criteria for diagnosis and grading of salpingitis,” Obstetrics and Gynecology, vol. 61, no. 1, pp. 113–114, 1983. View at Google Scholar · View at Scopus
  188. I. Simms, F. Warburton, and L. Weström, “Diagnosis of pelvic inflammatory disease: time for a rethink,” Sexually Transmitted Infections, vol. 79, no. 6, pp. 491–494, 2003. View at Publisher · View at Google Scholar · View at Scopus
  189. S. Kennedy, A. Bergqvist, C. Chapron et al., “ESHRE guideline for the diagnosis and treatment of endometriosis,” Human Reproduction, vol. 20, no. 10, pp. 2698–2704, 2005. View at Publisher · View at Google Scholar · View at Scopus
  190. K. E. May, S. A. Conduit-Hulbert, J. Villar, S. Kirtley, S. H. Kennedy, and C. M. Becker, “Peripheral biomarkers of endometriosis: a systematic review,” Human Reproduction Update, vol. 16, no. 6, pp. 651–674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  191. K. E. May, J. Villar, S. Kirtley, S. H. Kennedy, and C. M. Becker, “Endometrial alterations in endometriosis: a systematic review of putative biomarkers,” Human Reproduction Update, vol. 17, no. 5, pp. 637–653, 2011. View at Google Scholar
  192. P. Vercellini, L. Fedele, G. Aimi, G. Pietropaolo, D. Consonni, and P. G. Crosignani, “Association between endometriosis stage, lesion type, patient characteristics and severity of pelvic pain symptoms: a multivariate analysis of over 1000 patients,” Human Reproduction, vol. 22, no. 1, pp. 266–271, 2007. View at Publisher · View at Google Scholar · View at Scopus
  193. H. Stenlund, R. Madsen, A. Vivi et al., “Monitoring kidney-transplant patients using metabolomics and dynamic modeling,” Chemometrics and Intelligent Laboratory Systems, vol. 98, no. 1, pp. 45–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  194. A. K. Smilde, J. A. Westerhuis, H. C. J. Hoefsloot et al., “Dynamic metabolomic data analysis: a tutorial review,” Metabolomics, vol. 6, no. 1, pp. 3–17, 2010. View at Publisher · View at Google Scholar · View at Scopus