Table of Contents
International Journal of Spectroscopy
Volume 2011, Article ID 949745, 7 pages
http://dx.doi.org/10.1155/2011/949745
Research Article

Identification of Halohydrins as Potential Disinfection By-Products in Treated Drinking Water

1Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1
2Laboratory Services Branch, Ministry of the Environment (MOE), 125 Resources Road, Toronto, ON, Canada M9P 3V6
3School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
4Environmental Innovations Branch, Ministry of the Enviroment 135 Street Clair Avenue West, 11th Floor, Toronto, ON, Canada M4V 1P5

Received 15 June 2011; Accepted 15 August 2011

Academic Editor: Edenir R. Pereira-Filho

Copyright © 2011 Karl J. Jobst et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. D. Richardson, “Disinfection by-products and other emerging contaminants in drinking water,” Trends in Analytical Chemistry, vol. 22, no. 10, pp. 666–684, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Zwiener and S. D. Richardson, “Analysis of disinfection by-products in drinking water by LC-MS and related MS techniques,” Trends in Analytical Chemistry, vol. 24, no. 7, pp. 613–621, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. D. Richardson, “New disinfection by-product issues: emerging DBPs and alternative routes of exposure,” Global Nest Journal, vol. 7, no. 1, pp. 43–60, 2005. View at Google Scholar
  4. S. D. Richardson, “Water analysis: emerging contaminants and current issues,” Analytical Chemistry, vol. 81, no. 12, pp. 4645–4677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Y. Taguchi, “Structural elucidation of disinfection by-products in treated drinking water,” Rapid Communications in Mass Spectrometry, vol. 15, no. 7, pp. 455–461, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. F. W. McLafferty and F. Turecek, Interpretation of Mass Spectra, chapter 9, University Science Books, South Orange, NJ, USA, 4th edition, 1993.
  7. K. J. Jobst, P. J. A. Ruttink, and J. K. Terlouw, “The remarkable dissociation chemistry of 2-aminoxyethanol ions NH2OCH2CH2OH+ studied by experiment and theory,” International Journal of Mass Spectrometry, vol. 269, no. 3, pp. 165–176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. J. Jobst, S. Jogee, R. D. Bowen, and J. K. Terlouw, “A mechanistic study of the prominent loss of H2O from ionized 2-hydroxyaminoethanol,” International Journal of Mass Spectrometry, vol. 306, no. 2-3, pp. 138–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. T. W. Collette, S. D. Richardson, and A. D. Thruston Jr., “Identification of bromohydrins in ozonated waters,” Applied Spectroscopy, vol. 48, no. 10, pp. 1181–1192, 1994. View at Google Scholar · View at Scopus
  10. J. E. Cavanagh, H. S. Weinberg, A. Gold et al., “Ozonation byproducts: identification of bromohydrins from the ozonation of natural waters with enhanced bromide levels,” Environmental Science and Technology, vol. 26, no. 8, pp. 1658–1662, 1992. View at Google Scholar · View at Scopus
  11. G. M. Bennett and W. G. Philip, “CCLIII.—the influence of structure on the solubilities of ethers. Part II. Some cyclic ethers,” Journal of the Chemical Society, pp. 1937–1942, 1928. View at Publisher · View at Google Scholar · View at Scopus
  12. H. F. van Garderen, P. J. A. Ruttink, P. C. Burgers, G. A. McGibbon, and J. K. Terlouw, “Aspects of the CH5N2 potential energy surface: ions CH3NHNH+, CH3NNH2+ and CH2NHNH2+ and radicals CH2NHNH2 studied by theory and experiment,” International Journal of Mass Spectrometry and Ion Processes, vol. 121, no. 3, pp. 159–182, 1992. View at Google Scholar · View at Scopus
  13. F. C. Whitmore, C.S. Rowland, S. N. Wrenn, and G. W. Kilmer, “The dehydration of alcohols. XIX. t-Amyl alcohol and the related dimethylneopentylcarbinol,” Journal of the American Chemical Society, vol. 64, no. 12, pp. 2970–2972, 1942. View at Google Scholar
  14. J. B. Westmore and M. M. Alauddin, “Ammonia chemical ionization mass spectrometry,” Mass Spectrometry Reviews, vol. 5, pp. 381–465, 1986. View at Google Scholar
  15. J. L. Holmes, C. Aubry, and P. M. Mayer, Assigning Structures to Ions in Mass Spectrometry, CRC Press, Boca Raton, Fla, USA, 2007.
  16. Y. Xie and D. A. Reckhow, “Formation of halogenated artifacts in brominated, chloraminated, and chlorinated solvents,” Environmental Science and Technology, vol. 16, no. 7, pp. 1357–1360, 1994. View at Google Scholar · View at Scopus