Table of Contents Author Guidelines Submit a Manuscript
International Journal of Spectroscopy
Volume 2013 (2013), Article ID 690186, 8 pages
http://dx.doi.org/10.1155/2013/690186
Research Article

Carbon Dioxide Capture from Ambient Air Using Amine-Grafted Mesoporous Adsorbents

1Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
2Department of Energy and Environment, Chalmers University of Technology, 412 96 Göteborg, Sweden
3ETC Battery and FuelCells Sweden AB, 449 44 Nödinge Nol, Sweden

Received 26 February 2013; Accepted 31 March 2013

Academic Editor: Rolf W. Berg

Copyright © 2013 Annemarie Wagner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. S. Lackner, P. Grimes, and H.-J. Ziock, “Capturing Carbon Dioxide From Air,” 2013, http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/7b1.pdf. View at Google Scholar
  2. J. T. Houghton and Intergovernmental Panel on Climate Change Working Group III, Eds., Climate Change 1994, Cambridge University Press, Cambridge, UK, 1995.
  3. The Economist, “Welcome to the Anthropocene, 26 May 2011,” 2013. View at Google Scholar
  4. K. B. Lee, M. G. Beaver, H. S. Caram, and S. Sircar, “Reversible chemisorbents for carbon dioxide and their potential applications,” Industrial and Engineering Chemistry Research, vol. 47, no. 21, pp. 8048–8062, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. M. D'Alessandro, B. Smit, and J. R. Long, “Carbon dioxide capture: prospects for new materials,” Angewandte Chemie, vol. 49, no. 35, pp. 6058–6082, 2010. View at Publisher · View at Google Scholar
  6. J. Oexmann, A. Kather, S. Linnenberg, and U. Liebenthal, “Post-combustion CO2 capture: chemical absorption processes in coal-fired steam power plants,” Greenhouse Gases, vol. 2, no. 2, pp. 80–98, 2012. View at Publisher · View at Google Scholar
  7. R. Socolow and M. Desmond, “Direct air capture of CO2 with chemicals, A Technology Assessment for the APS Panel on Public Affairs,” 2011, http://www.aps.org/policy/reports/assessments/upload/dac2011.pdf. View at Google Scholar
  8. K. Z. House, A. C. Baclig, M. Ranjan, E. A. van Nierop, J. Wilcox, and H. J. Herzog, “Economic and energetic analysis of capturing CO2 from ambient air,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 51, pp. 20428–20433, 2011. View at Publisher · View at Google Scholar
  9. S. Choi, J. H. Drese, P. M. Eisenberger, and C. W. Jones, “Application of amine-tethered solid sorbents for direct CO2 dapture from the ambient air,” Environmental Science & Technology, vol. 45, no. 6, pp. 2420–2427, 2011. View at Publisher · View at Google Scholar
  10. A. Sayari and Y. Belmabhout, “Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor,” Journal of the American Chemical Society, vol. 132, no. 18, pp. 6312–6314, 2010. View at Publisher · View at Google Scholar
  11. Y. Belmabkhout and A. Sayari, “Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions,” Adsorption, vol. 15, no. 3, pp. 318–328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Nikulshina, N. Ayesa, M. E. Gálvez, and A. Steinfeld, “Feasibility of Na-based thermochemical cycles for the capture of CO2 from air-Thermodynamic and thermogravimetric analyses,” Chemical Engineering Journal, vol. 140, no. 1–3, pp. 62–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Nikulshina, C. Gebald, and A. Steinfeld, “CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor,” Chemical Engineering Journal, vol. 146, no. 2, pp. 244–248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Brandani and D. M. Ruthven, “The effect of water on the adsorption of CO2 and C 3H8 on type X zeolites,” Industrial and Engineering Chemistry Research, vol. 43, no. 26, pp. 8339–8344, 2004. View at Google Scholar · View at Scopus
  15. R. Serna-Guerrero, Y. Belmabkhkout, and A. Sayari, “Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture: an experimental and statistical study,” Chemical Engineering Science, vol. 65, no. 14, pp. 4166–4172, 2010. View at Publisher · View at Google Scholar
  16. J. C. Santos, F. D. Magalhaes, and A. Mendes, “Contamination of zeolites used in oxygen production by PSA: effects of water and carbon dioxide,” Industrial & Engineering Chemistry Research, vol. 47, no. 16, pp. 6197–6203, 2008. View at Publisher · View at Google Scholar
  17. T. C. Drage, A. Arenillas, K. M. Smith, and C. E. Snape, “Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies,” Microporous and Mesoporous Materials, vol. 116, no. 1–3, pp. 504–512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Chen, S.-T. Yang, W. S. Ahn, and R. Ryoo, “Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity,” Chemical Communications, no. 24, pp. 3627–3629, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. R. S. Franchi, P. J. E. Harlick, and A. Sayari, “Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2,” Industrial and Engineering Chemistry Research, vol. 44, no. 21, pp. 8007–8013, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Satyapal, T. Filburn, J. Trela, and J. Strange, “Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications,” Energy and Fuels, vol. 15, no. 2, pp. 250–255, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Huang, R. Yang, D. Chinn, and C. L. Munson, “Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas,” Industrial & Engineering Chemistry Research, vol. 42, no. 12, pp. 2427–2433, 2003. View at Publisher · View at Google Scholar
  22. X. Xu, C. Song, B. G. Miller, and A. W. Scaroni, “Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent,” Fuel Processing Technology, vol. 86, no. 14-15, pp. 1457–1472, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Serna-Guerrero, E. Da'na, and A. Sayari, “New insights into the interactions of CO2 with amine-functionalized silica,” Industrial and Engineering Chemistry Research, vol. 47, no. 23, pp. 9406–9412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Serna-Guerrero, Y. Belmabkhout, and A. Sayari, “Further investigations of CO2 capture using triamine-grafted pore-expanded mesoporous silica,” Chemical Engineering Journal, vol. 158, no. 3, pp. 513–519, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Belmabkhout, R. Serna-Guerrero, and A. Sayari, “Amine-bearing mesoporous silica for CO2 removal from dry and humid air,” Chemical Engineering Science, vol. 65, no. 11, pp. 3695–3698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. P. J. E. Harlick and A. Sayari, “Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption,” Industrial & Engineering Chemistry Research, vol. 45, no. 9, pp. 3248–3255, 2006. View at Publisher · View at Google Scholar
  27. R. Serna-Guerrero, Y. Belmabkhout, and A. Sayari, “Triamine-grafted pore-expanded mesoporous silica for CO2 capture: effect of moisture and adsorbent regeneration strategies,” Adsorption, vol. 16, no. 6, pp. 567–575, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. P. J. E. Harlick and A. Sayari, “Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance,” Industrial & Engineering Chemistry Research, vol. 46, no. 2, pp. 446–458, 2007. View at Publisher · View at Google Scholar
  29. N. R. Stuckert and R. T. Yang, “CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15,” Environmental Science & Technology, vol. 45, no. 23, pp. 10257–12264, 2011. View at Publisher · View at Google Scholar
  30. C. W. Jones, “CO2 capture from dilute gases as a component of modern global carbon management,” Annual Review of Chemical and Biomolecular Engineering, vol. 2, pp. 31–52, 2011. View at Publisher · View at Google Scholar
  31. Y. Belmabkhout, R. Serna-Guerrero, and A. Sayari, “Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for gas purification,” Industrial and Engineering Chemistry Research, vol. 49, no. 1, pp. 359–365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Steeneveldt, B. Berger, and T. A. Torp, “CO2 capture and storage: closing the knowing-doing gap,” Chemical Engineering Research and Design, vol. 84, no. 9, pp. 739–763, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. R. O. Idem and A. Bello, “Pathways for the formation of products of the oxidative degradation of CO2-loaded concentrated aqueous monoethanolamine solutions during CO2 absorption from flue gases,” Industrial & Engineering Chemistry Research, vol. 44, no. 4, pp. 945–969, 2005. View at Publisher · View at Google Scholar
  34. Y. Belmabkhout and A. Sayari, “Isothermal versus non-isothermal adsorption-desorption cycling of triamine-grafted pore-expanded MCM-41 mesoporous silica for CO2 capture from flue gas,” Energy and Fuels, vol. 24, no. 9, pp. 5273–5280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Sayari, A. Heydari-Gorji, and Y. Yang, “CO2-induced degradation of amine-containing adsorbents: reaction products and pathways,” Journal of the American Chemical Society, vol. 134, no. 33, pp. 13834–13842, 2012. View at Publisher · View at Google Scholar
  36. P. C. Rooney, T. R. Bacon, and M. S. DuPart, Hydrocarbon Processing, Ibid Press, Chicago, Ill, USA, 1996.
  37. Annual report on air pollution in 2010, Göteborg, Sweden, R, 2011:10.