Table of Contents
International Journal of Spectroscopy
Volume 2013, Article ID 923739, 6 pages
http://dx.doi.org/10.1155/2013/923739
Research Article

Orientation and Optical Polarized Spectra (380–900 nm) of Methylene Blue Crystals on a Glass Surface

Department of Mineralogy, Crystallography, Petrology and Geochemistry, Faculty of Mining and Geology, University of Belgrade, Djušina 7, 11000 Belgrade, Serbia

Received 12 March 2013; Accepted 26 June 2013

Academic Editor: Jaan Laane

Copyright © 2013 Maja D. Milošević et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Cenens and R. A. Schoonheydt, “Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension,” Clays and Clay Minerals, vol. 36, no. 3, pp. 214–224, 1988. View at Publisher · View at Google Scholar · View at Scopus
  2. M. G. Neumann, F. Gessner, C. C. Schmitt, and R. Satori, “Influence of the layer charge and clay particle size on the interactions between the cationic dye methylene blue and clays in an aqueous suspension,” Journal of Colloid and Interface Science, vol. 255, no. 2, pp. 254–259, 2002. View at Publisher · View at Google Scholar
  3. J. Bujdák, N. Iyi, Y. Kaneko, and R. Sasai, “Molecular orientation of methylene blue cations adsorbed on clay surfaces,” Clay Minerals, vol. 38, no. 4, pp. 561–572, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Bujdak, “Effect of the layer charge of clay minerals on optical properties of organic dyes. A review,” Applied Clay Science, vol. 34, pp. 58–73, 2006. View at Publisher · View at Google Scholar
  5. A. Czimerova, J. Bujdak, and R. Dohrmann, “Traditional and novel methods for estimating the layer charge of smectites,” Applied Clay Science, vol. 34, no. 1–4, pp. 2–13, 2006. View at Publisher · View at Google Scholar
  6. E. Rabinowitch and L. F. Epstein, “Polymerization of dyestuffs in solution; thionine and methylene blue,” Journal of the American Chemical Society, vol. 63, p. 69, 1941. View at Google Scholar
  7. K. Bergman and C. T. O'Konski, “A spectroscopic study of methylene blue' monomer, dimer, and complexes with montmorillonite,” The Journal of Physical Chemistry, vol. 67, pp. 2169–2177, 1963. View at Google Scholar
  8. P. T. Hang and G. W. Brindley, “Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII),” Clays and Clay Minerals, vol. 18, no. 4, pp. 203–212, 1970. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Gessner, C. C. Schmitt, and M. G. Neumann, “Time-dependent spectrophotometric study of the interaction of basic dyes with clays. 1. Methylene blue and neutral red on montmorrillonite and hectorite,” Langmuir, vol. 10, no. 10, pp. 3749–3753, 1994. View at Google Scholar · View at Scopus
  10. F. Li and R. N. Zare, “Molecular orientation study of methylene blue at an air/fused-silica interface using evanescent-wave cavity ring-down spectroscopy,” The Journal of Physical Chemistry. B, vol. 109, no. 8, pp. 3330–3333, 2005. View at Google Scholar
  11. S. M. Ohline, S. Lee, S. Williams, and C. Chang, “Quantification of methylene blue aggregation on a fused silica surface and resolution of individual absorbance spectra,” Chemical Physics Letters, vol. 346, no. 1-2, pp. 9–15, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Hähner, A. Marti, N. D. Spencer, and W. R. Caseri, “Orientation and electronic structure of methylene blue on mica: a near edge X-ray absorption fine structure spectroscopy study,” Journal of Chemical Physics, vol. 104, p. 7749, 1996. View at Publisher · View at Google Scholar
  13. K. Fujita, K. Taniguchi, and H. Ohno, “Dynamic analysis of aggregation of methylene blue with polarized optical waveguide spectroscopy,” Talanta, vol. 65, no. 5, pp. 1066–1070, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Kobayashi, M. Takahashi, and M. Kotani, “Spontaneous formation of an ordered structure during dip-coating of methylene blue on fused quartz,” Chemical Physics Letters, vol. 349, no. 5-6, pp. 376–382, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Homem-de-Mello, B. Mennuci, J. Tomasi, and A. B. F. da Silva, “Cationic dye dimers: a theoretical study,” Theoretical Chemistry Accounts, vol. 118, no. 2, pp. 305–314, 2007. View at Publisher · View at Google Scholar
  16. S. W. Bodman, S. P. Kodama, P. C. Pfeil, and R. E. Stevens, “Solubility and properties of two crystalline phases of methylene blue,” Journal of Chemical & Engineering Data, vol. 12, no. 4, pp. 500–504, 1967. View at Publisher · View at Google Scholar · View at Scopus
  17. W. M. Wendlandt and G. H. Hecht, Reflectance Spectroscopy, John Wiley & Sons, New York, NY, USA, 1966.
  18. H. M. Marr, J. M. Stewart, and M. F. Chiu, “The crystal structure of methylene blue pentahydrate,” Acta Crystallographica B, vol. 29, pp. 847–853, 1973. View at Publisher · View at Google Scholar
  19. A. J. Aznar, B. Casal, E. Ruiz-Hitzky et al., “Adsorption of methylene blue on sepiolite gels: spectroscopic and rheological studies,” Clay Minerals, vol. 27, pp. 101–108, 1992. View at Publisher · View at Google Scholar
  20. Z. Klika, P. Čapková, P. Horáková et al., “Composition, structure, and luminescence of montmorillonites saturated with different aggregates of methylene blue,” Journal of Colloid and Interface Science, vol. 311, no. 1, pp. 14–23, 2007. View at Publisher · View at Google Scholar