Abstract

Identities between first-passage or last-exit probabilities and unrestricted transition probabilities that hold for left- or right-continuous lattice-valued random walks form the basis of an intuitively based approximation that is demonstrated by computation to hold for certain random walks without either the left- or right-continuity properties. The argument centers on the use of ladder variables; the identities are known to hold asymptotically from work of Iglehart leading to Brownian meanders.