International Journal of Stochastic Analysis

International Journal of Stochastic Analysis / 1996 / Article

Open Access

Volume 9 |Article ID 252703 |

Alexander Dukhovny, "GIX/MY/1 systems with resident server and generally distributed arrival and service groups", International Journal of Stochastic Analysis, vol. 9, Article ID 252703, 12 pages, 1996.

GIX/MY/1 systems with resident server and generally distributed arrival and service groups

Received01 Dec 1995
Revised01 Mar 1996


Considered are bulk systems of GI/M/1 type in which the server stands by when it is idle, waits for the first group to arrive if the queue is empty, takes customers up to its capacity and is not available when busy. Distributions of arrival group size and server's capacity are not restricted. The queueing process is analyzed via an augmented imbedded Markov chain. In the general case, the generating function of the steady-state probabilities of the chain is found as a solution of a Riemann boundary value problem. This function is proven to be rational when the generating function of the arrival group size is rational, in which case the solution is given in terms of roots of a characteristic equation. A necessary and sufficient condition of ergodicity is proven in the general case. Several special cases are studied in detail: single arrivals, geometric arrivals, bounded arrivals, and an arrival group with a geometric tail.

Copyright © 1996 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

 PDF Download Citation Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.