Abstract

We give a theorem on implicit difference functional inequalities generated by mixed problems for nonlinear systems of first-order partial differential functional equations. We apply this result in the investigations of the stability of difference methods. Classical solutions of mixed problems are approximated in the paper by solutions of suitable implicit difference schemes. The proof of the convergence of difference method is based on comparison technique, and the result on difference functional inequalities is used. Numerical examples are presented.

1. Introduction

The papers [1, 2] initiated the theory of difference inequalities generated by first-order partial differential equations. The results and the methods presented in [1, 2] were extended in [3, 4] on functional differential problems, and they were generalized in [5โ€“8] on parabolic differential and differential functional equations. Explicit difference schemes were considered in the above papers.

Our purpose is to give a result on implicit difference inequalities corresponding to initial boundary value problems for first-order functional differential equations.

We prove also that that there are implicit difference methods which are convergent. The proof of the convergence is based on a theorem on difference functional inequalities.

We formulate our functional differential problems. For any metric spaces ๐‘‹ and ๐‘Œ we denote by ๐ถ(๐‘‹,๐‘Œ) the class of all continuous functions from ๐‘‹ into ๐‘Œ. We will use vectorial inequalities with the understanding that the same inequalities hold between their corresponding components. Write๎€บ๐ธ=[0,๐‘Ž]ร—(โˆ’๐‘,๐‘),๐ท=โˆ’๐‘‘0๎€ป,0ร—[โˆ’๐‘‘,๐‘‘],(1.1)where ๐‘Ž>0, ๐‘=(๐‘1,โ€ฆ,๐‘๐‘›)โˆˆโ„๐‘›, ๐‘๐‘–>0 for 1โ‰ค๐‘–โ‰ค๐‘› and ๐‘‘=(๐‘‘1,โ€ฆ,๐‘‘๐‘›)โˆˆโ„๐‘›+, ๐‘‘0โˆˆโ„+, โ„+=[0,+โˆž). Let ๐‘=๐‘+๐‘‘ and๐ธ0=๎€บโˆ’๐‘‘0๎€ป๐œ•,0ร—[โˆ’๐‘,๐‘],0๐ธ=[0,๐‘Ž]ร—([โˆ’๐‘,๐‘]โงต(โˆ’๐‘,๐‘)),ฮฉ=๐ธโˆช๐ธ0โˆช๐œ•0๐ธ.(1.2)For a function ๐‘งโˆถฮฉโ†’โ„๐‘˜, ๐‘ง=(๐‘ง1,โ€ฆ,๐‘ง๐‘˜), and for a point (๐‘ก,๐‘ฅ)โˆˆ๐ธ where ๐ธ is the closure of ๐ธ, we define a function ๐‘ง(๐‘ก,๐‘ฅ)โˆถ๐ทโ†’โ„๐‘˜ by ๐‘ง(๐‘ก,๐‘ฅ)(๐œ,๐‘ฆ)=๐‘ง(๐‘ก+๐œ,๐‘ฅ+๐‘ฆ), (๐œ,๐‘ฆ)โˆˆ๐ท. Then ๐‘ง(๐‘ก,๐‘ฅ) is the restriction of ๐‘ง to the set [๐‘กโˆ’๐‘‘0,๐‘ก]ร—[๐‘ฅโˆ’๐‘‘,๐‘ฅ+๐‘‘] and this restriction is shifted to the set ๐ท. Write ฮฃ=๐ธร—๐ถ(๐ท,โ„๐‘˜)ร—โ„๐‘› and suppose that ๐‘“=(๐‘“1,โ€ฆ,๐‘“๐‘˜)โˆถฮฃโ†’โ„๐‘˜ and ๐œ‘โˆถ๐ธ0โˆช๐œ•0๐ธโ†’โ„๐‘˜, ๐œ‘=(๐œ‘1,โ€ฆ,๐œ‘๐‘˜), are given functions. Let us denote by ๐‘ง=(๐‘ง1,โ€ฆ,๐‘ง๐‘˜) an unknown function of the variables (๐‘ก,๐‘ฅ), ๐‘ฅ=(๐‘ฅ1,โ€ฆ,๐‘ฅ๐‘›). Write๎€ท๐‘“๐”ฝ[๐‘ง](๐‘ก,๐‘ฅ)=1๎€ท๐‘ก,๐‘ฅ,๐‘ง(๐‘ก,๐‘ฅ),๐œ•๐‘ฅ๐‘ง1๎€ธ(๐‘ก,๐‘ฅ),โ€ฆ,๐‘“๐‘˜๎€ท๐‘ก,๐‘ฅ,๐‘ง(๐‘ก,๐‘ฅ),๐œ•๐‘ฅ๐‘ง๐‘˜(๐‘ก,๐‘ฅ)๎€ธ๎€ธ(1.3)and ๐œ•๐‘ฅ๐‘ง๐‘–=(๐œ•๐‘ฅ1๐‘ง๐‘–,โ€ฆ,๐œ•๐‘ฅ๐‘›๐‘ง๐‘–), 1โ‰ค๐‘–โ‰ค๐‘˜. We consider the system of functional differential equations๐œ•๐‘ก๐‘ง(๐‘ก,๐‘ฅ)=๐”ฝ[๐‘ง](๐‘ก,๐‘ฅ)(1.4)with the initial boundary condition๐‘ง(๐‘ก,๐‘ฅ)=๐œ‘(๐‘ก,๐‘ฅ)on๐ธ0โˆช๐œ•0๐ธ.(1.5)In the paper we consider classical solutions of (1.4), (1.5).

We give examples of equations which can be obtained from (1.4) by specializing the operator ๐‘“.

Example 1.1. Suppose that the function ๐›ผโˆถ๐ธโ†’โ„1+๐‘› satisfies the condition: ๐›ผ(๐‘ก,๐‘ฅ)โˆ’(๐‘ก,๐‘ฅ)โˆˆ๐ท for (๐‘ก,๐‘ฅ)โˆˆ๐ธ. For a given ๎‚๎‚๐‘“๐‘“=(1๎‚๐‘“,โ€ฆ,๐‘˜)โˆถ๐ธร—โ„๐‘˜ร—โ„๐‘˜ร—โ„๐‘›โ†’โ„๐‘˜ we put ๎‚๐‘“๎€ท๎€ท๎€ธ๎€ธ๐‘“(๐‘ก,๐‘ฅ,๐‘ค,๐‘ž)=๐‘ก,๐‘ฅ,๐‘ค(0,๐œƒ),๐‘ค๐›ผ(๐‘ก,๐‘ฅ)โˆ’(๐‘ก,๐‘ฅ),๐‘žonฮฃ,(1.6)where ๐œƒ=(0,โ€ฆ,0)โˆˆโ„๐‘›. Then (1.4) is reduced to the system of differential equations with deviated variables๐œ•๐‘ก๐‘ง๐‘–๎‚๐‘“(๐‘ก,๐‘ฅ)=๐‘–๎€ท๎€ท๎€ธ๐‘ก,๐‘ฅ,๐‘ง(๐‘ก,๐‘ฅ),๐‘ง๐›ผ(๐‘ก,๐‘ฅ),๐œ•๐‘ฅ๐‘ง๐‘–๎€ธ(๐‘ก,๐‘ฅ),๐‘–=1,โ€ฆ,๐‘˜.(1.7)

Example 1.2. For the above ๎‚๐‘“ we define ๎‚๐‘“๎‚€๎€œ๐‘“(๐‘ก,๐‘ฅ,๐‘ค,๐‘ž)=๐‘ก,๐‘ฅ,๐‘ค(0,๐œƒ),๐ท๎‚๐‘ค(๐œ,๐‘ฆ)๐‘‘๐‘ฆ๐‘‘๐œ,๐‘žonฮฃ.(1.8)Then (1.4) is equivalent to the system of differential integral equations๐œ•๐‘ก๐‘ง๐‘–๎‚๐‘“(๐‘ก,๐‘ฅ)=๐‘–๎‚€๎€œ๐‘ก,๐‘ฅ,๐‘ง(๐‘ก,๐‘ฅ),๐ท๐‘ง(๐‘ก+๐œ,๐‘ฅ+๐‘ฆ)๐‘‘๐‘ฆ๐‘‘๐œ,๐œ•๐‘ฅ๐‘ง๐‘–๎‚(๐‘ก,๐‘ฅ),๐‘–=1,โ€ฆ,๐‘˜.(1.9)

It is clear that more complicated differential systems with deviated variables and differential integral problems can be obtained from (1.4) by a suitable definition of ๐‘“. Sufficient conditions for the existence and uniqueness of classical or generalized solutions of (1.4), (1.5) can be found in [9, 10].

Our motivations for investigations of implicit difference functional inequalities and for the construction of implicit difference schemes are the following. Two types of assumptions are needed in theorems on the stability of difference functional equations generated by (1.4), (1.5). The first type conditions concern regularity of ๐‘“. It is assumed that

(i)the function ๐‘“ of the variables (๐‘ก,๐‘ฅ,๐‘ค,๐‘ž), ๐‘ž=(๐‘ž1,โ€ฆ,๐‘ž๐‘›), is of class ๐ถ1 with respect to ๐‘ž and the functions ๐œ•๐‘ž๐‘“๐‘–=(๐œ•๐‘ž1๐‘“๐‘–,โ€ฆ,๐œ•๐‘ž๐‘›๐‘“๐‘–), 1โ‰ค๐‘–โ‰ค๐‘˜, are bounded,(ii)๐‘“ satisfies the Perron type estimates with respect to the functional variable ๐‘ค. The second type conditions concern the mesh. It is required that difference schemes generated by (1.4), (1.5) satisfy the condition1โˆ’โ„Ž0๐‘›๎“๐‘—=11โ„Ž๐‘—||๐œ•๐‘ž๐‘—๐‘“๐‘–||(๐‘ก,๐‘ฅ,๐‘ค,๐‘ž)โ‰ฅ0onฮฃfor๐‘–=1,โ€ฆ,๐‘˜,(1.10)where โ„Ž0 and โ„Žโ€ฒ=(โ„Ž1,โ€ฆ,โ„Ž๐‘›) are steps of the mesh with respect to ๐‘ก and (๐‘ฅ1,โ€ฆ,๐‘ฅ๐‘›) respectively. The above assumption is known as a generalized Courant-Friedrichs-Levy (CFL) condition for (1.4), (1.5) (see [11, Chapter 3] and [10, Chapter 5]). It is clear that strong assumptions on relations between โ„Ž0 and โ„Ž๎…ž are required in (1.10). It is important in our considerations that assumption (1.10) is omitted in a theorem on difference inequalities and in a theorem on the convergence of difference schemes.

We show that there are implicit difference methods for (1.4), (1.5) which are convergent while the corresponding explicit difference schemes are not convergent. We give suitable numerical examples.

The paper is organized as follows. A theorem on implicit difference functional inequalities with unknown function of several variables is proved in Section 2. We propose in Section 3 implicit difference schemes for the numerical solving of functional differential equations. Convergence results and error estimates are presented. A theorem on difference inequalities is used in the investigation of the stability of implicit difference methods. Numerical examples are given in the last part of the paper.

We use in the paper general ideas for finite difference equations which were introduced in [12โ€“14]. For further bibliographic informations concerning differential and functional differential inequalities and applications see the survey paper [15] and the monographs [16, 17].

2. Functional Difference Inequalities

For any two sets ๐‘ˆ and ๐‘Š we denote by ๐น(๐‘ˆ,๐‘Š) the class of all functions defined on ๐‘ˆ and taking values in ๐‘Š. Let โ„• and โ„ค be the sets of natural numbers and integers, respectively. For ๐‘ฅ=(๐‘ฅ1,โ€ฆ,๐‘ฅ๐‘›)โˆˆโ„๐‘›, ๐‘=(๐‘1,โ€ฆ,๐‘๐‘˜)โˆˆโ„๐‘˜ we put||๐‘ฅโ€–๐‘ฅโ€–=1||||๐‘ฅ+โ‹ฏ+๐‘›||,โ€–๐‘โ€–โˆž๎€ฝ||๐‘=max๐‘–||๎€พโˆถ1โ‰ค๐‘–โ‰ค๐‘˜.(2.1)We define a mesh on ฮฉ in the following way. Suppose that (โ„Ž0,โ„Ž๎…ž), โ„Žโ€ฒ=(โ„Ž1,โ€ฆ,โ„Ž๐‘›), stand for steps of the mesh. For (๐‘Ÿ,๐‘š)โˆˆโ„ค1+๐‘› where ๐‘š=(๐‘š1,โ€ฆ,๐‘š๐‘›), we define nodal points as follows:๐‘ก(๐‘Ÿ)=๐‘Ÿโ„Ž0,๐‘ฅ(๐‘š)=๎€ท๐‘ฅ(๐‘š1)1,โ€ฆ,๐‘ฅ(๐‘š๐‘›)๐‘›๎€ธ=๎€ท๐‘š1โ„Ž1,โ€ฆ,๐‘š๐‘›โ„Ž๐‘›๎€ธ.(2.2)Let us denote by ๐ป the set of all โ„Ž=(โ„Ž0,โ„Ž๎…ž) such that there are ๐พ0โˆˆโ„ค and ๐พ=(๐พ1,โ€ฆ,๐พ๐‘›)โˆˆโ„ค๐‘› satisfying the conditions: ๐พ0โ„Ž0=๐‘‘0 and (๐พ1โ„Ž1,โ€ฆ,๐พ๐‘›โ„Ž๐‘›)=๐‘‘. Setโ„โ„Ž1+๐‘›=๐‘ก๎€ฝ๎€ท(๐‘Ÿ),๐‘ฅ(๐‘š)๎€ธโˆถ(๐‘Ÿ,๐‘š)โˆˆโ„ค1+๐‘›๎€พ,๐ทโ„Ž=๐ทโˆฉโ„โ„Ž1+๐‘›,๐ธโ„Ž=๐ธโˆฉโ„โ„Ž1+๐‘›,๐ธ0.โ„Ž=๐ธ0โˆฉโ„โ„Ž1+๐‘›,๐œ•0๐ธโ„Ž=๐œ•0๐ธโˆฉโ„โ„Ž1+๐‘›,ฮฉโ„Ž=๐ธโ„Žโˆช๐ธ0.โ„Žโˆช๐œ•0๐ธโ„Ž.(2.3)Let ๐‘0โˆˆโ„• be defined by the relations: ๐‘0โ„Ž0โ‰ค๐‘Ž<(๐‘0+1)โ„Ž0 and๐ธ๎…žโ„Ž=๐‘ก๎€ฝ๎€ท(๐‘Ÿ),๐‘ฅ(๐‘š)๎€ธโˆˆ๐ธโ„Žโˆถ0โ‰ค๐‘Ÿโ‰ค๐‘0๎€พโˆ’1.(2.4)For functions ๐‘คโˆถ๐ทโ„Žโ†’โ„๐‘˜ and ๐‘งโˆถฮฉโ„Žโ†’โ„๐‘˜ we write ๐‘ค(๐‘Ÿ,๐‘š)=๐‘ค(๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š)) on ๐ทโ„Ž and ๐‘ง(๐‘Ÿ,๐‘š)=๐‘ง(๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š)) on ฮฉโ„Ž. We need a discrete version of the operator (๐‘ก,๐‘ฅ)โ†’๐‘ง(๐‘ก,๐‘ฅ). For a function ๐‘งโˆถฮฉโ„Žโ†’โ„๐‘˜ and for a point (๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š))โˆˆ๐ธโ„Ž we define a function ๐‘ง[๐‘Ÿ,๐‘š]โˆถ๐ทโ„Žโ†’โ„๐‘˜ by๐‘ง[๐‘Ÿ,๐‘š]๎€ท๐‘ก(๐œ,๐‘ฆ)=๐‘ง(๐‘Ÿ)+๐œ,๐‘ฅ(๐‘š)๎€ธ+๐‘ฆ,(๐œ,๐‘ฆ)โˆˆ๐ทโ„Ž.(2.5)Solutions of difference equations corresponding to (1.4), (1.5) are functions defined on the mesh. On the other hand (1.4) contains the functional variable ๐‘ง(๐‘ก,๐‘ฅ) which is an element of the space ๐ถ(๐ท,โ„๐‘˜). Then we need an interpolating operator ๐‘‡โ„Žโˆถ๐น(๐ทโ„Ž,โ„๐‘˜)โ†’๐ถ(๐ท,โ„๐‘˜). We define ๐‘‡โ„Ž in the following way. Let us denote by (๐œ—1,โ€ฆ,๐œ—๐‘›) the family of sets defined by๐œ—๐‘–={0,1}if๐‘‘๐‘–>0,๐œ—๐‘–={0}if๐‘‘๐‘–=0,1โ‰ค๐‘–โ‰ค๐‘›.(2.6)Set ๐œ=(๐œ1,โ€ฆ,๐œ๐‘›)โˆˆโ„ค๐‘› and ๐œ๐‘–=0 if ๐‘‘๐‘–=0, ๐œ๐‘–=1 if ๐‘‘๐‘–>0 where 1โ‰ค๐‘–โ‰ค๐‘›. Writeฮ”+=๎€ฝ๎€ท๐œ†๐œ†=1,โ€ฆ,๐œ†๐‘›๎€ธโˆถ๐œ†๐‘–โˆˆ๐œ—๐‘–๎€พfor1โ‰ค๐‘–โ‰ค๐‘›.(2.7)Set ๐‘’๐‘–=(0,โ€ฆ,0,1,0,โ€ฆ,0)โˆˆโ„๐‘› with 1 standing on the ๐‘–th place.

Let ๐‘คโˆˆ๐น(๐ทโ„Ž,โ„๐‘˜) and (๐‘ก,๐‘ฅ)โˆˆ๐ท. Suppose that ๐‘‘0>0. There exists (๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š))โˆˆ๐ทโ„Ž such that (๐‘ก(๐‘Ÿ+1),๐‘ฅ(๐‘š+๐œ))โˆˆ๐ทโ„Ž and ๐‘ก(๐‘Ÿ)โ‰ค๐‘กโ‰ค๐‘ก(๐‘Ÿ+1), ๐‘ฅ(๐‘š)โ‰ค๐‘ฅโ‰ค๐‘ฅ(๐‘š+๐œ). Write๐‘‡โ„Ž๎‚€[๐‘ค](๐‘ก,๐‘ฅ)=1โˆ’๐‘กโˆ’๐‘ก(๐‘Ÿ)โ„Ž0๎‚๎“๐œ†โˆˆฮ”+๐‘ค(๐‘Ÿ,๐‘š+๐œ†)๎‚€๐‘ฅโˆ’๐‘ฅ(๐‘š)โ„Ž๎…ž๎‚๐œ†๎‚€1โˆ’๐‘ฅโˆ’๐‘ฅ(๐‘š)โ„Ž๎…ž๎‚1โˆ’๐œ†+๐‘กโˆ’๐‘ก(๐‘Ÿ)โ„Ž0๎“๐œ†โˆˆฮ”+๐‘ค(๐‘Ÿ+1,๐‘š+๐œ†)๎‚€๐‘ฅโˆ’๐‘ฅ(๐‘š)โ„Ž๎…ž๎‚๐œ†๎‚€1โˆ’๐‘ฅโˆ’๐‘ฅ(๐‘š)โ„Ž๎…ž๎‚1โˆ’๐œ†,(2.8) where๎‚€๐‘ฅโˆ’๐‘ฅ(๐‘š)โ„Ž๎…ž๎‚๐œ†=๐‘›๎‘๐‘–=1๎‚€๐‘ฅ๐‘–โˆ’๐‘ฅ(๐‘š๐‘–)๐‘–โ„Ž๐‘–๎‚๐œ†๐‘–,๎‚€1โˆ’๐‘ฅโˆ’๐‘ฅ(๐‘š)โ„Ž๎…ž๎‚1โˆ’๐œ†=๐‘›๎‘๐‘–=1๎‚€๐‘ฅ1โˆ’๐‘–โˆ’๐‘ฅ(๐‘š๐‘–)๐‘–โ„Ž๐‘–๎‚1โˆ’๐œ†๐‘–(2.9) and we take 00=1 in the above formulas. If ๐‘‘0=0 then we put๐‘‡โ„Ž๎“[๐‘ค](๐‘ก,๐‘ฅ)=๐œ†โˆˆฮ”+๐‘ค(๐‘Ÿ,๐‘š+๐œ†)๎‚€๐‘ฅโˆ’๐‘ฅ(๐‘š)โ„Ž๎…ž๎‚๐œ†๎‚€1โˆ’๐‘ฅโˆ’๐‘ฅ(๐‘š)โ„Ž๎…ž๎‚1โˆ’๐œ†.(2.10)Then we have defined ๐‘‡โ„Ž[๐‘ค] on ๐ท. It is easy to see that ๐‘‡โ„Ž[๐‘ค]โˆˆ๐ถ(๐ท,โ„๐‘˜). The above interpolating operator has been first proposed in [10, Chapter 5].

For ๐‘ค,๐‘คโˆˆ๐น(๐ทโ„Ž,โ„๐‘˜) we write ๐‘คโ‰ค๐‘ค if ๐‘ค(๐‘Ÿ,๐‘š)โ‰ค๐‘ค(๐‘Ÿ,๐‘š) where (๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š))โˆˆ๐ทโ„Ž. In a similar way we define the relation ๐‘คโ‰ค๐‘ค for ๐‘ค,๐‘คโˆˆ๐ถ(๐ท,โ„๐‘˜) and the relation ๐‘งโ‰ค๐‘ง for ๐‘ง,๐‘งโˆˆ๐น(ฮฉโ„Ž,โ„๐‘˜) and for ๐‘ง,๐‘งโˆˆ๐ถ(ฮฉ,โ„๐‘˜).

We formulate an implicit difference scheme for (1.4), (1.5). For ๐‘ฅ,๐‘ฆโˆˆโ„๐‘› we write ๐‘ฅโ‹„๐‘ฆ=(๐‘ฅ1๐‘ฆ1,โ€ฆ,๐‘ฅ๐‘›๐‘ฆ๐‘›)โˆˆโ„๐‘›.

Assumption (๐ป[๐‘“]). The function ๐‘“=(๐‘“1,โ€ฆ,๐‘“๐‘˜)โˆถฮฃโ†’โ„๐‘˜ of the variables (๐‘ก,๐‘ฅ,๐‘ค,๐‘ž), ๐‘ž=(๐‘ž1,โ€ฆ,๐‘ž๐‘›), is continuous and
(1)the partial derivatives (๐œ•๐‘ž1๐‘“๐‘–,โ€ฆ,๐œ•๐‘ž๐‘›๐‘“๐‘–)=๐œ•๐‘ž๐‘“๐‘–, ๐‘–=1,โ€ฆ,๐‘˜, exist on ฮฃ and the functions ๐œ•๐‘ž๐‘“๐‘–, ๐‘–=1,โ€ฆ,๐‘˜, are continuous and bounded on ฮฃ,(2)there is ฬƒ๐‘ฅโˆˆ(โˆ’๐‘,๐‘), ฬƒ๐‘ฅ=(๎‚๐‘ฅ1,โ€ฆ,๎‚๐‘ฅ๐‘›), such that(๐‘ฅโˆ’ฬƒ๐‘ฅ)โ‹„๐œ•๐‘ž๐‘“๐‘–(๐‘ก,๐‘ฅ,๐‘ค,๐‘ž)โ‰ฅ๐œƒonฮฃfor๐‘–=1,โ€ฆ,๐‘˜,(2.11)(3)there is ๐œ€0>0 such that for 0<โ„Ž0<๐œ€0 and ๐‘ค,๐‘คโˆˆ๐ถ(๐ท,โ„๐‘˜), ๐‘คโ‰ค๐‘ค, we have๐‘ค(0,๐œƒ)+โ„Ž0๐‘“(๐‘ก,๐‘ฅ,๐‘ค,๐‘ž)โ‰ค๐‘ค(0,๐œƒ)+โ„Ž0๐‘“(๐‘ก,๐‘ฅ,๐‘ค,๐‘ž),(๐‘ก,๐‘ฅ,๐‘ž)โˆˆ๐ธร—โ„๐‘›.(2.12)

Remark 2.1. The existence theory of classical or generalized solutions to (1.4), (1.5) is based on a method of bicharacteristics. Suppose that ๐‘งโˆˆ๐ถ(ฮฉ,โ„๐‘˜), ๐‘ขโˆˆ๐ถ(ฮฉ,โ„๐‘›). Let us denote by ๐‘”๐‘–๎€ท๐‘”[๐‘ง,๐‘ข](โ‹…,๐‘ก,๐‘ฅ)=๐‘–.1[๐‘ง,๐‘ข](โ‹…,๐‘ก,๐‘ฅ),โ€ฆ,๐‘”๐‘–.๐‘›๎€ธ[๐‘ง,๐‘ข](โ‹…,๐‘ก,๐‘ฅ)(2.13)the ๐‘–th bicharacteristic of (1.4) corresponding to (๐‘ง,๐‘ข). Then ๐‘”๐‘–[๐‘ง,๐‘ข](โ‹…,๐‘ก,๐‘ฅ) is a solution of the Cauchy problem๐‘ฆ๎…ž(๐œ)=โˆ’๐œ•๐‘ž๐‘“๐‘–๎€ท๐œ,๐‘ฆ(๐œ),๐‘ง(๐œ,๐‘ฆ(๐œ))๎€ท,๐‘ข๐œ,๐‘ฆ(๐œ)๎€ธ๎€ธ,๐‘ฆ(๐‘ก)=๐‘ฅ.(2.14)Assumption (2.11) states that the bicharacteristics satisfy the following monotonicity conditions: If ๐‘ฅ๐‘—โˆ’๎‚๐‘ฅ๐‘—โ‰ฅ0 the function ๐‘”๐‘–๐‘—[๐‘ง,๐‘ข](โ‹…,๐‘ก,๐‘ฅ) is non increasing. If ๐‘ฅ๐‘—โˆ’๎‚๐‘ฅ๐‘—<0 then ๐‘”๐‘–๐‘—[๐‘ง,๐‘ข](โ‹…,๐‘ก,๐‘ฅ) is nondecreasing.
The same property of bicharacteristics is needed in a theorem on the existence and uniqueness of solutions to (1.4), (1.5) see [9]. It is important that our theory of difference methods is consistent with known theorems on the existence of solutions to (1.4), (1.5).

Remark 2.2. Given the function ๎‚๎‚๐‘“๐‘“=(1๎‚๐‘“,โ€ฆ,๐‘˜)โˆถ๐ธร—โ„ร—๐ถ(๐ท,โ„๐‘˜)ร—โ„๐‘›โ†’โ„๐‘˜ of the variables (๐‘ก,๐‘ฅ,๐‘,๐‘ค,๐‘ž). Write ๐‘“๐‘–๎‚๐‘“(๐‘ก,๐‘ฅ,๐‘ค,๐‘ž)=๐‘–(๐‘ก,๐‘ฅ,๐‘ค๐‘–(0,๐œƒ),๐‘ค,๐‘ž), ๐‘–=1,โ€ฆ,๐‘˜, on ฮฃ. Then system (1.4) is equivalent to ๐œ•๐‘ก๐‘ง๐‘–๎‚๐‘“(๐‘ก,๐‘ฅ)=๐‘–๎€ท๐‘ก,๐‘ฅ,๐‘ง๐‘–(๐‘ก,๐‘ฅ),๐‘ง(๐‘ก,๐‘ฅ),๐œ•๐‘ฅ๐‘ง๐‘–๎€ธ(๐‘ก,๐‘ฅ),๐‘–=1,โ€ฆ,๐‘˜.(2.15)Note that the dependence of ๎‚๐‘“ on the classical variable ๐‘ง(๐‘ก,๐‘ฅ) is distinguished in (2.15). Suppose that
(1)๎‚๐‘“ is nondecreasing with respect to the functional variable,(2)there exists the derivative ๐œ•๐‘๎‚๐‘“=(๐œ•๐‘๎‚๐‘“1,โ€ฆ,๐œ•๐‘๎‚๐‘“๐‘˜) and ๐œ•๐‘๎‚๐‘“๐‘–(๐‘ก,๐‘ฅ,๐‘,๐‘ค,๐‘ž)โ‰ฅ๐ฟ for ๐‘–=1,โ€ฆ,๐‘˜ and 1+๐ฟโ„Ž0โ‰ฅ0. Then the monotonicity condition (3) of Assumption (๐ป[๐‘“])โ€‰โ€‰is satisfied.

Let us denote by ๐ปโ‹† the set of all โ„Ž=(โ„Ž0,โ„Ž๎…ž)โˆˆ๐ป such thatโ„Ž๐‘–๎€ฝ๐‘<min๐‘–โˆ’๎‚๐‘ฅ๐‘–,๎‚๐‘ฅ๐‘–+๐‘๐‘–๎€พ,๐‘–=1,โ€ฆ,๐‘›.(2.16)Suppose that ๐œ”โˆถฮฉโ„Žโ†’โ„. We apply difference operators ๐›ฟ=(๐›ฟ1,โ€ฆ,๐›ฟ๐‘›) given byif๎‚๐‘ฅ๐‘—โ‰ค๐‘ฅ(๐‘š๐‘—)๐‘—<๐‘๐‘—then๐›ฟ๐‘—๐œ”(๐‘Ÿ,๐‘š)=1โ„Ž๐‘—๎€บ๐œ”(๐‘Ÿ,๐‘š+๐‘’๐‘—)โˆ’๐œ”(๐‘Ÿ,๐‘š)๎€ป,ifโˆ’๐‘๐‘—<๐‘ฅ(๐‘š๐‘—)๐‘—<๎‚๐‘ฅ๐‘—then๐›ฟ๐‘—๐œ”(๐‘Ÿ,๐‘š)=1โ„Ž๐‘—๎€บ๐œ”(๐‘Ÿ,๐‘š)โˆ’๐œ”(๐‘Ÿ,๐‘šโˆ’๐‘’๐‘—)๎€ป,(2.17)and we put ๐‘—=1,โ€ฆ,๐‘› in (2.17). Let ๐›ฟ0 be defined by๐›ฟ0๐œ”(๐‘Ÿ,๐‘š)=1โ„Ž0๎€บ๐œ”(๐‘Ÿ+1,๐‘š)โˆ’๐œ”(๐‘Ÿ,๐‘š)๎€ป(2.18)and ๐›ฟ0๐‘ง=(๐›ฟ0๐‘ง1,โ€ฆ,๐›ฟ0๐‘ง๐‘˜). Write๐”ฝโ„Ž[๐‘ง](๐‘Ÿ,๐‘š)=๎€ท๐‘“1๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž๐‘ง[๐‘Ÿ,๐‘š],๐›ฟ๐‘ง1(๐‘Ÿ+1,๐‘š)๎€ธ,โ€ฆ,๐‘“๐‘˜๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž๐‘ง[๐‘Ÿ,๐‘š],๐›ฟ๐‘ง๐‘˜(๐‘Ÿ+1,๐‘š)๎€ธ๎€ธ.(2.19) Given ๐œ‘โ„Žโˆถ๐ธ0.โ„Žโˆช๐œ•0๐ธโ„Žโ†’โ„๐‘˜, we consider the functional difference equation๐›ฟ0๐‘ง(๐‘Ÿ,๐‘š)=๐”ฝโ„Ž[๐‘ง](๐‘Ÿ,๐‘š)(2.20)with the initial boundary condition๐‘ง(๐‘Ÿ,๐‘š)=๐œ‘โ„Ž(๐‘Ÿ,๐‘š)on๐ธ0.โ„Žโˆช๐œ•0๐ธโ„Ž.(2.21)

The above problem is considered as an implicit difference method for (1.4), (1.5). It is important that the difference expressions (๐›ฟ1๐‘ง๐‘–,โ€ฆ,๐›ฟ๐‘›๐‘ง๐‘–), 1โ‰ค๐‘–โ‰ค๐‘˜, are calculated at the point (๐‘ก(๐‘Ÿ+1),๐‘ฅ(๐‘š)) and the functional variable ๐‘‡โ„Ž๐‘ง[๐‘Ÿ,๐‘š] appears in a classical sense.

We prove a theorem on implicit difference inequalities corresponding to (2.20), (2.21). Note that results on implicit difference methods presented in [18] are not applicable to (2.20), (2.21).

Theorem 2.3. Suppose that Assumption (๐ป[๐‘“])โ€‰โ€‰is satisfied and
(1)โ„Žโˆˆ๐ปโ‹†, โ„Ž0<๐œ€0 and the functions ๐‘ข,๐‘ฃโˆถฮฉโ„Žโ†’โ„๐‘˜ satisfy the difference functional inequality๐›ฟ0๐‘ข(๐‘Ÿ,๐‘š)โˆ’๐”ฝโ„Ž[๐‘ข](๐‘Ÿ,๐‘š)โ‰ค๐›ฟ0๐‘ฃ(๐‘Ÿ,๐‘š)โˆ’๐”ฝโ„Ž[๐‘ฃ](๐‘Ÿ,๐‘š)on๐ธ๎…žโ„Ž,(2.22)(2)the initial boundary estimate ๐‘ข(๐‘Ÿ,๐‘š)โ‰ค๐‘ฃ(๐‘Ÿ,๐‘š) holds on ๐ธ0.โ„Žโˆช๐œ•0๐ธโ„Ž. Then ๐‘ข(๐‘Ÿ,๐‘š)โ‰ค๐‘ฃ(๐‘Ÿ,๐‘š)on๐ธโ„Ž.(2.23)

Proof. We prove (2.23) by induction on ๐‘Ÿ. It follows from assumption (2) that estimate (2.23) is satisfied for ๐‘Ÿ=0 and (๐‘ก(0),๐‘ฅ(๐‘š))โˆˆ๐ธโ„Ž. Assume that ๐‘ข(๐‘—,๐‘š)โ‰ค๐‘ฃ(๐‘—,๐‘š) for (๐‘ก(๐‘—),๐‘ฅ(๐‘š))โˆˆ๐ธโ„Žโˆฉ([0,๐‘ก(๐‘Ÿ)]ร—โ„๐‘›). We prove that ๐‘ข(๐‘Ÿ+1,๐‘š)โ‰ค๐‘ฃ(๐‘Ÿ+1,๐‘š) for (๐‘ก(๐‘Ÿ+1,๐‘š),๐‘ฅ(๐‘š))โˆˆ๐ธโ„Ž. Write๐‘ˆ๐‘–(๐‘Ÿ,๐‘š)=๐‘ข๐‘–(๐‘Ÿ,๐‘š)+โ„Ž0๐‘“๐‘–๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž๐‘ข[๐‘Ÿ,๐‘š],๐›ฟ๐‘ข๐‘–(๐‘Ÿ+1,๐‘š)๎€ธโˆ’๐‘ฃ๐‘–(๐‘Ÿ,๐‘š)โˆ’โ„Ž0๐‘“๐‘–๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž๐‘ฃ[๐‘Ÿ,๐‘š],๐›ฟ๐‘ข๐‘–(๐‘Ÿ+1,๐‘š)๎€ธ,๐‘–=1,โ€ฆ,๐‘˜.(2.24) It follows from (2.22) that๎€ท๐‘ข๐‘–โˆ’๐‘ฃ๐‘–๎€ธ(๐‘Ÿ+1,๐‘š)โ‰ค๐‘ˆ๐‘–(๐‘Ÿ,๐‘š)+โ„Ž0๎€บ๐‘“๐‘–๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž๐‘ฃ[๐‘Ÿ,๐‘š],๐›ฟ๐‘ข๐‘–(๐‘Ÿ+1,๐‘š)๎€ธโˆ’๐‘“๐‘–๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž๐‘ฃ[๐‘Ÿ,๐‘š],๐›ฟ๐‘ฃ๐‘–(๐‘Ÿ+1,๐‘š),๎€ธ๎€ป(2.25) where ๐‘–=1,โ€ฆ,๐‘˜. The monotonicity condition (3) of Assumption (๐ป[๐‘“])โ€‰โ€‰implies the inequalities ๐‘ˆ๐‘–(๐‘Ÿ,๐‘š)โ‰ค0 for (๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š))โˆˆ๐ธโ„Ž, ๐‘–=1,โ€ฆ,๐‘˜. Then we have๎€ท๐‘ข๐‘–โˆ’๐‘ฃ๐‘–๎€ธ(๐‘Ÿ+1,๐‘š)โ‰คโ„Ž0๐‘›๎“๐‘—=1๎€œ10๐œ•๐‘ž๐‘—๐‘“๐‘–๎€ท๐‘„๐‘–(๐‘Ÿ,๐‘š)๎€ธ[๐‘ฃ,๐œ]๐‘‘๐œ๐›ฟ๐‘—๎€ท๐‘ข๐‘–โˆ’๐‘ฃ๐‘–๎€ธ(๐‘Ÿ+1,๐‘š),(2.26)where ๐‘–=1,โ€ฆ,๐‘˜ and๐‘„๐‘–(๐‘Ÿ,๐‘š)๎€ท๐‘ก[๐‘ฃ,๐œ]=(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž๐‘ฃ[๐‘Ÿ,๐‘š],๐›ฟ๐‘ฃ๐‘–(๐‘Ÿ+1,๐‘š)๎€ท๐‘ข+๐œ๐›ฟ๐‘–โˆ’๐‘ฃ๐‘–๎€ธ(๐‘Ÿ+1,๐‘š)๎€ธ.(2.27)Writeฮ“+(๐‘š)=๎€ฝ๐‘—โˆˆ{1,โ€ฆ,๐‘›}โˆถ๐‘ฅ(๐‘š๐‘—)๐‘—โˆˆ๎€บ๎‚๐‘ฅ๐‘—,๐‘๐‘—๎€ธ๎€พ,ฮ“โˆ’(๐‘š)={1,โ€ฆ,๐‘›}โงตฮ“+(๐‘š).(2.28)It follows from (2.11), (2.17) that๎€ท๐‘ข๐‘–โˆ’๐‘ฃ๐‘–๎€ธ(๐‘Ÿ+1,๐‘š)๎‚ƒ1+โ„Ž0๐‘›๎“๐‘—=11โ„Ž๐‘—๎€œ10||๐œ•๐‘ž๐‘—๐‘“๐‘–๎€ท๐‘„๐‘–(๐‘Ÿ,๐‘š)๎€ธ๎‚„[๐‘ฃ,๐œ]|๐‘‘๐œโ‰คโ„Ž0๎“๐‘—โˆˆฮ“+(๐‘š)1โ„Ž๐‘—๎€œ10๐œ•๐‘ž๐‘—๐‘“๐‘–๎€ท๐‘„๐‘–(๐‘Ÿ,๐‘š)๎€ธ๎€ท๐‘ข[๐‘ฃ,๐œ]๐‘‘๐œ๐‘–โˆ’๐‘ฃ๐‘–๎€ธ(๐‘Ÿ+1,๐‘š+๐‘’๐‘—)โˆ’โ„Ž0๎“๐‘—โˆˆฮ“โˆ’(๐‘š)1โ„Ž๐‘—๎€œ10๐œ•๐‘ž๐‘—๐‘“๐‘–๎€ท๐‘„๐‘–(๐‘Ÿ,๐‘š)๎€ธ๎€ท๐‘ข[๐‘ฃ,๐œ]๐‘‘๐œ๐‘–โˆ’๐‘ฃ๐‘–๎€ธ(๐‘Ÿ+1,๐‘šโˆ’๐‘’๐‘—),๐‘–=1,โ€ฆ,๐‘˜.(2.29) We define ๎‚๐‘šโˆˆโ„ค๐‘› and ๐œ‡โˆˆโ„•, 1โ‰ค๐œ‡โ‰ค๐‘˜, as follows:๎€ท๐‘ข๐œ‡โˆ’๐‘ฃ๐œ‡๎€ธ(๐‘Ÿ+1,๎‚๐‘š)=max1โ‰ค๐‘–โ‰ค๐‘˜๐‘ขmax๎€ฝ๎€ท๐‘–โˆ’๐‘ฃ๐‘–๎€ธ(๐‘Ÿ+1,๐‘š)โˆถ๎€ท๐‘ก(๐‘Ÿ+1),๐‘ฅ(๐‘š)๎€ธโˆˆฮฉโ„Ž๎€พ.(2.30)If (๐‘ก(๐‘Ÿ+1),๐‘ฅ(๎‚๐‘š))โˆˆ๐œ•0๐ธโ„Ž then assumption (2) implies that (๐‘ข๐œ‡โˆ’๐‘ฃ๐œ‡)(๐‘Ÿ+1,๎‚๐‘š)โ‰ค0. Let us consider the case when (๐‘ก(๐‘Ÿ+1),๐‘ฅ(๎‚๐‘š))โˆˆ๐ธโ„Ž. Then we have from (2.29) that๎€ท๐‘ข๐œ‡โˆ’๐‘ฃ๐œ‡๎€ธ(๐‘Ÿ+1,๎‚๐‘š)๎‚ธ1+โ„Ž0๐‘›๎“๐‘—=11โ„Ž๐‘—๎€œ10||๐œ•๐‘ž๐‘—๐‘“๐‘–(๐‘„๐‘–(๐‘Ÿ,๎‚๐‘š)||๎‚น[๐‘ฃ,๐œ])๐‘‘๐œโ‰คโ„Ž0๎€ท๐‘ข๐œ‡โˆ’๐‘ฃ๐œ‡๎€ธ(๐‘Ÿ+1,๎‚๐‘š)๎‚ธ๎“๐‘—โˆˆฮ“+(๎‚๐‘š)1โ„Ž๐‘—๎€œ10๐œ•๐‘ž๐‘—๐‘“๐‘–๎€ท๐‘„๐‘–(๐‘Ÿ,๎‚๐‘š)๎€ธโˆ’๎“[๐‘ฃ,๐œ]๐‘‘๐œ๐‘—โˆˆฮ“โˆ’(๎‚๐‘š)1โ„Ž๐‘—๎€œ10๐œ•๐‘ž๐‘—๐‘“๐‘–๎€ท๐‘„(๐‘Ÿ,๎‚๐‘š๎€ธ๐‘–๎€ธ๎‚น.[๐‘ฃ,๐œ]๐‘‘๐œ(2.31) It follows that (๐‘ข๐œ‡โˆ’๐‘ฃ๐œ‡)(๐‘Ÿ+1,๎‚๐‘š)โ‰ค0. The the proof of (2.23) is completed by induction.

3. Implicit Difference Schemes

We define ๐‘=(๐‘1,โ€ฆ,๐‘๐‘›)โˆˆ๐‘๐‘› by the relations:๎€ท๐‘1โ„Ž1,โ€ฆ,๐‘๐‘›โ„Ž๐‘›๎€ธ<๎€ท๐‘1,โ€ฆ,๐‘๐‘›๎€ธโ‰ค๐‘๎€ท๎€ท1๎€ธโ„Ž+11๎€ท๐‘,โ€ฆ,๐‘›๎€ธโ„Ž+1๐‘›๎€ธ(3.1)and we assume that (๐‘๐‘–+1)โ„Ž๐‘–=๐‘๐‘– if ๐‘‘๐‘–=0. For ๐‘คโˆˆ๐ถ(๐ท,โ„๐‘˜) we writeโ€–๐‘คโ€–๐ท๎€ฝโ€–โ€–โ€–โ€–=max๐‘ค(๐‘ก,๐‘ฅ)โˆž๎€พโˆถ(๐‘ก,๐‘ฅ)โˆˆ๐ท.(3.2)In a similar way we define the norm in the space ๐น(๐ทโ„Ž,โ„๐‘˜) : if ๐‘คโˆถ๐ทโ„Žโ†’โ„๐‘˜ thenโ€–๐‘คโ€–๐ทโ„Ž๎€ฝโ€–โ€–๐‘ค=max(๐‘Ÿ,๐‘š)โ€–โ€–โˆžโˆถ๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š)๎€ธโˆˆ๐ทโ„Ž๎€พ.(3.3)The following properties of the operator ๐‘‡โ„Ž are important in our considerations.

Lemma 3.1. Suppose that ๐‘คโˆถ๐ทโ†’โ„๐‘˜ is of class ๐ถ1 and ๐‘คโ„Ž is the restriction of ๐‘ค to the set ๐ทโ„Ž. Let ๎‚๐ถ be such a constant that โ€–๐œ•๐‘ก๐‘คโ€–๐ท, โ€–๐œ•๐‘ฅ๐‘–๐‘คโ€–๐ทโ‰ค๎‚๐ถ for 1โ‰ค๐‘–โ‰ค๐‘›. Then โ€–๐‘‡โ„Ž[๐‘คโ„Ž]โˆ’๐‘คโ€–๐ทโ‰ค๎‚๐ถโ€–โ„Žโ€– where โ€–โ„Žโ€–=โ„Ž0+โ„Ž1+โ‹ฏ+โ„Ž๐‘›.

Lemma 3.2. Suppose that ๐‘คโˆถ๐ทโ†’โ„๐‘˜ is of class ๐ถ2 and ๐‘คโ„Ž is the restriction of ๐‘ค to the set ๐ทโ„Ž. Let ๎‚๐ถ be such a constant that โ€–๐œ•๐‘ก๐‘ก๐‘คโ€–๐ท, โ€–๐œ•๐‘ก๐‘ฅ๐‘–๐‘คโ€–๐ท, โ€–๐œ•๐‘ฅ๐‘–๐‘ฅ๐‘—๐‘คโ€–๐ทโ‰ค๎‚๐ถ,โ€‰โ€‰ ๐‘–,๐‘—=1,โ€ฆ,๐‘›. Then โ€–๐‘‡โ„Ž[๐‘คโ„Ž]โˆ’๐‘คโ€–๐ทโ‰ค๎‚๐ถโ€–โ„Žโ€–2.

The above lemmas are consequences of [10, Lemma 3.19 and Theorem 5.27].

We first prove a theorem on the existence and uniqueness of solutions to (2.20), (2.21).

Theorem 3.3. If Assumption (๐ป[๐‘“])โ€‰โ€‰is satisfied and ๐œ‘โ„Žโˆˆ๐น(๐ธ0.โ„Žโˆช๐œ•0๐ธโ„Ž,โ„๐‘˜) then there exists exactly one solution ๐‘ขโ„Ž=(๐‘ขโ„Ž.1,โ€ฆ,๐‘ขโ„Ž.๐‘˜)โˆถฮฉโ„Žโ†’โ„๐‘˜ of difference functional problem (2.20), (2.21).

Proof. Suppose that 0โ‰ค๐‘Ÿโ‰ค๐‘0โˆ’1 is fixed and that the solution ๐‘ขโ„Ž of problem (2.20), (2.21) is given on the set ฮฉโ„Žโˆฉ([โˆ’๐‘‘0,๐‘ก(๐‘Ÿ)]ร—โ„๐‘›). We prove that the vectors ๐‘ขโ„Ž(๐‘Ÿ+1,๐‘š),โ€‰โ€‰โˆ’๐‘โ‰ค๐‘šโ‰ค๐‘, exist and that they are unique. It is sufficient to show that there exists exactly one solution of the system of equations1โ„Ž0๎€ท๐‘ง๐‘–(๐‘Ÿ+1,๐‘š)โˆ’๐‘ข(๐‘Ÿ,๐‘š)โ„Ž.๐‘–๎€ธ=๐‘“๐‘–๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡(๐‘ขโ„Ž)[๐‘Ÿ,๐‘š],๐›ฟ๐‘ง๐‘–(๐‘Ÿ+1,๐‘š)๎€ธ,(3.4)where โˆ’๐‘โ‰ค๐‘šโ‰ค๐‘,๐‘–=1,โ€ฆ,๐‘˜, with the initial boundary condition (2.21). There exists ๐‘„โ„Ž>0 such that๐‘„โ„Žโ‰ฅโ„Ž0๎‚ธ๎“๐‘—โˆˆฮ“+(๐‘š)1โ„Ž๐‘—๐œ•๐‘ž๐‘—๐‘“๐‘–๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž๎€ท๐‘ขโ„Ž๎€ธ[๐‘Ÿ,๐‘š]๎€ธโˆ’๎“,๐‘ž๐‘—โˆˆฮ“โˆ’(๐‘š)1โ„Ž๐‘—๐œ•๐‘ž๐‘—๐‘“๐‘–๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž๎€ท๐‘ขโ„Ž๎€ธ[๐‘Ÿ,๐‘š]๎€ธ๎‚น,๐‘ž,(3.5) where โˆ’๐‘โ‰ค๐‘šโ‰ค๐‘,๐‘–=1,โ€ฆ,๐‘˜. It is clear that system (3.4) is equivalent to the following one:๐‘ง๐‘–(๐‘Ÿ+1,๐‘š)=1๐‘„โ„Ž๎‚ƒ๐‘„+1โ„Ž๐‘ง๐‘–(๐‘Ÿ+1,๐‘š)+๐‘ข(๐‘Ÿ,๐‘š)โ„Ž.๐‘–+โ„Ž0๐‘“๐‘–๎‚€๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž๎€ท๐‘ขโ„Ž๎€ธ[๐‘Ÿ,๐‘š],๐›ฟ๐‘ง๐‘–(๐‘Ÿ+1,๐‘š),๎‚๎‚„โˆ’๐‘โ‰ค๐‘šโ‰ค๐‘,๐‘–=1,โ€ฆ,๐‘˜(3.6) Write ๐‘†โ„Ž={๐‘ฅ(๐‘š)โˆถ๐‘ฅ(๐‘š)โˆˆ[โˆ’๐‘,๐‘]}. Elements of the space ๐น(๐‘†โ„Ž,โ„๐‘˜) are denoted by ๐œ‰, ๐œ‰. For ๐œ‰โˆถ๐‘†โ„Žโ†’โ„๐‘˜, ๐œ‰=(๐œ‰1,โ€ฆ,๐œ‰๐‘˜), we write ๐œ‰(๐‘š)=๐œ‰(๐‘ฅ(๐‘š)) and๐›ฟ๐œ‰๐‘–(๐‘š)=๎€ท๐›ฟ1๐œ‰๐‘–(๐‘š),โ€ฆ,๐›ฟ๐‘›๐œ‰๐‘–(๐‘š)๎€ธ๐›ฟ,1โ‰ค๐‘–โ‰ค๐‘˜,๐‘—๐œ‰๐‘–(๐‘š)=1โ„Ž๐‘—๎€บ๐œ‰(๐‘š+๐‘’๐‘—๐‘–๐‘—)โˆ’๐œ‰๐‘–(๐‘š)๎€ปif๐‘ฅ(๐‘š๐‘—)๐‘—โˆˆ๎€บ๎‚๐‘ฅ๐‘—,๐‘๐‘—๎€ธ,๐›ฟ๐‘—๐œ‰๐‘–(๐‘š)=1โ„Ž๐‘—๎€บ๐œ‰๐‘–(๐‘š)โˆ’๐œ‰(๐‘šโˆ’๐‘’๐‘—)๐‘–๎€ปif๐‘ฅ(๐‘š๐‘—)๐‘—โˆˆ๎€ท๐‘๐‘—,๎‚๐‘ฅ๐‘—๎€ธ,(3.7)where ๐‘—=1,โ€ฆ,๐‘›. The norm in the space ๐น(๐‘†โ„Ž,โ„๐‘˜) is defined byโ€–๐œ‰โ€–โ‹†๎€ฝโ€–โ€–๐œ‰=max(๐‘š)โ€–โ€–โˆžโˆถ๐‘ฅ(๐‘š)โˆˆ๐‘†โ„Ž๎€พ.(3.8)Let us consider the set๐‘‹โ„Ž=๎€ฝ๎€ท๐‘†๐œ‰โˆˆ๐นโ„Ž,โ„๐‘˜๎€ธโˆถ๐œ‰(๐‘š)=๐œ‘(๐‘Ÿ+1,๐‘š)for๐‘ฅ(๐‘š)๎€ธโˆˆ[โˆ’๐‘,๐‘]โงต(โˆ’๐‘,๐‘}.(3.9)We consider the operator ๐‘Šโ„Žโˆถ๐‘‹โ„Žโ†’๐‘‹โ„Ž,โ€‰โ€‰๐‘Šโ„Ž=(๐‘Šโ„Ž.1,โ€ฆ,๐‘Šโ„Ž.๐‘›) defined by๐‘Šโ„Ž.๐‘–[๐œ‰](๐‘š)=1๐‘„โ„Ž๎€บ๐‘„+1โ„Ž๐œ‰๐‘–(๐‘š)+๐‘ข(๐‘Ÿ,๐‘š)โ„Ž.๐‘–+โ„Ž0๐‘“๐‘–๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š)๎€ท๐‘ข,๐‘‡โ„Ž๎€ธ[๐‘Ÿ,๐‘š],๐›ฟ๐œ‰๐‘–(๐‘š)๎€ธ๎€ป,(3.10)where โˆ’๐‘โ‰ค๐‘šโ‰ค๐‘,โ€‰โ€‰๐‘–=1,โ€ฆ,๐‘˜ and๐‘Šโ„Ž[๐œ‰](๐‘š)=๐œ‘โ„Ž(๐‘Ÿ+1,๐‘š)for๐‘ฅ(๐‘š)โˆˆ[โˆ’๐‘,๐‘]โงต(โˆ’๐‘,๐‘),(3.11)where ๐œ‰=(๐œ‰1,โ€ฆ,๐œ‰๐‘˜)โˆˆ๐น(๐‘†โ„Ž,โ„๐‘˜). We prove thatโ€–โ€–๐‘Šโ„Ž[๐œ‰]โˆ’๐‘Šโ„Ž[โ€–โ€–๐œ‰]โ‹†โ‰ค๐‘„โ„Ž๐‘„โ„Ž+1โ€–๐œ‰โˆ’๐œ‰โ€–โ‹†๎€ท๐‘†on๐นโ„Ž,โ„๐‘˜๎€ธ.(3.12)
It follows from (3.10) that we have for โˆ’๐‘โ‰ค๐‘šโ‰ค๐‘:๐‘Šโ„Ž.๐‘–[๐œ‰](๐‘š)โˆ’๐‘Šโ„Ž.๐‘–[๐œ‰](๐‘š)=1๐‘„โ„Ž๎‚ƒ๐‘„+1โ„Ž๎€ท๐œ‰๐‘–โˆ’๐œ‰๐‘–๎€ธ(๐‘š)โˆ’โ„Ž0๎“๐‘—โˆˆฮ“+(๐‘š)1โ„Ž๐‘—๎€œ10๐œ•๐‘ž๐‘—๐‘“๐‘–๎€ท๐‘ƒ๐‘–(๐‘Ÿ,๐‘š)[๐‘ขโ„Ž๎€ธ๎€ท๐œ‰,๐œ]๐‘‘๐œ๐‘–โˆ’๐œ‰๐‘–๎€ธ(๐‘š)+๎“๐‘—โˆˆฮ“โˆ’(๐‘š)1โ„Ž๐‘—๎€œ10๐œ•๐‘ž๐‘—๐‘“๐‘–๎€ท๐‘ƒ๐‘–(๐‘Ÿ,๐‘š)[๐‘ขโ„Ž๎€ธ,๐œ]๐‘‘๐œ(๐œ‰๐‘–โˆ’๐œ‰๐‘–)(๐‘š)+โ„Ž0๎“๐‘—โˆˆฮ“+(๐‘š)1โ„Ž๐‘—๎€œ10๐œ•๐‘ž๐‘—๐‘“๐‘–๎€ท๐‘ƒ๐‘–(๐‘Ÿ,๐‘š)[๐‘ขโ„Ž๎€ธ,๐œ]๐‘‘๐œ(๐œ‰๐‘–โˆ’๐œ‰๐‘–)(๐‘š+๐‘’๐‘—)โˆ’โ„Ž0๎“๐‘—โˆˆฮ“โˆ’(๐‘š)1โ„Ž๐‘—๎€œ10๐œ•๐‘ž๐‘—๐‘“๐‘–๎€ท๐‘ƒ๐‘–(๐‘Ÿ,๐‘š)[๐‘ขโ„Ž๎€ธ,๐œ]๐‘‘๐œ(๐œ‰๐‘–โˆ’๐œ‰๐‘–)(๐‘šโˆ’๐‘’๐‘—)๎‚„,(3.13) where ๐‘–=1,โ€ฆ,๐‘˜ and๐‘ƒ๐‘–(๐‘Ÿ,๐‘š)๎€บ๐‘ขโ„Ž๎€ป=๎‚€๐‘ก,๐œ(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž๎€ท๐‘ขโ„Ž๎€ธ[๐‘Ÿ,๐‘š],๐›ฟ๐œ‰๐‘–(๐‘š)๎€ท๐œ‰+๐œ๐›ฟ๐‘–โˆ’๐œ‰๐‘–๎€ธ(๐‘š)๎‚.(3.14)It follows from the above relations and from (3.5) that|||๐‘Šโ„Ž.๐‘–[๐œ‰](๐‘š)โˆ’๐‘Šโ„Ž.๐‘–[๐œ‰](๐‘š)|||โ‰ค๐‘„โ„Ž๐‘„โ„Ž+1โ€–๐œ‰โˆ’๐œ‰โ€–โ‹†forโˆ’๐‘โ‰ค๐‘šโ‰ค๐‘,๐‘–=1,โ€ฆ,๐‘˜.(3.15)According to (3.12) we have๐‘Šโ„Ž.๐‘–[๐œ‰](๐‘š)โˆ’๐‘Šโ„Ž.๐‘–[๐œ‰](๐‘š)=0for๐‘ฅ(๐‘š)โˆˆ[โˆ’๐‘,๐‘]โงต(โˆ’๐‘,๐‘),๐‘–=1,โ€ฆ,๐‘˜.(3.16)This completes the proof of (3.12).
It follows from the Banach fixed point theorem that there exists exactly one solution ๐œ‰โˆถ๐‘†โ„Žโ†’โ„๐‘˜ of the equation ๐œ‰=๐‘Šโ„Ž[๐œ‰] and consequently, there exists exactly one solution of (3.6), (2.21). Then the vectors ๐‘ขโ„Ž(๐‘Ÿ+1,๐‘š), โˆ’๐‘โ‰ค๐‘šโ‰ค๐‘, exist and they are unique. Then the proof is completed by induction with respect to ๐‘Ÿ, 0โ‰ค๐‘Ÿโ‰ค๐‘0.

Assumption (๐ป[๐œŽ]). The function ๐œŽโˆถ[0,๐‘Ž]ร—โ„+โ†’โ„+ satisfies the conditions:
(1)๐œŽ is continuous and it is nondecreasing with respect to the both variables,(2)๐œŽ(๐‘ก,0)=0 for ๐‘กโˆˆ[0,๐‘Ž] and the maximal solution of the Cauchy problem๐œ‚๎…ž(๐‘ก)=๐œŽ(๐‘ก,๐œ‚(๐‘ก)),๐œ‚(0)=0,(3.17)is ฬƒ๐œ‚(๐‘ก)=0 for ๐‘กโˆˆ[0,๐‘Ž].

Assumption (๐ป[๐‘“,๐œŽ]). There is ๐œŽโˆถ[0,๐‘Ž]ร—โ„+โ†’โ„+ such that Assumption (๐ป[๐œŽ])โ€‰โ€‰is satisfied and for ๐‘ค,๐‘คโˆˆโ„‚(๐ท,โ„๐‘˜), ๐‘คโ‰ฅ๐‘ค, we have๐‘“๐‘–(๐‘ก,๐‘ฅ,๐‘ค,๐‘ž)โˆ’๐‘“๐‘–(๐‘ก,๐‘ฅ,๎€ท๐‘ค,๐‘ž)โ‰ค๐œŽ๐‘ก,โ€–๐‘คโˆ’๐‘คโ€–๐ท๎€ธ,๐‘–=1,โ€ฆ,๐‘˜,(3.18)where (๐‘ก,๐‘ฅ,๐‘ž)โˆˆ๐ธร—โ„๐‘›.

Theorem 3.4. Suppose that Assumptions (๐ป[๐‘“])โ€‰โ€‰andโ€‰โ€‰ (๐ป[๐‘“,๐œŽ])โ€‰โ€‰are satisfied and
(1)๐‘ฃโˆถฮฉโ†’โ„ is a solution of (1.4), (1.5) and ๐‘ฃ is of class ๐ถ1 on ฮฉ,(2)โ„Žโˆˆ๐ปโˆ—, โ„Ž0<๐œ€ and ๐œ‘โ„Žโˆถ๐ธ0.โ„Žโˆช๐œ•0๐ธโ„Žโ†’โ„๐‘˜ and there is ๐›ผ0โˆถ๐ปโˆ—โ†’โ„+ such thatโ€–โ€–๐œ‘(๐‘Ÿ,๐‘š)โˆ’๐œ‘โ„Ž(๐‘Ÿ,๐‘š)โ€–โ€–โˆžโ‰ค๐›ผ0(โ„Ž)on๐ธ0.โ„Žโˆช๐œ•0๐ธโ„Ž,limโ„Žโ†’0๐›ผ0(โ„Ž)=0.(3.19) Under these assumptions there is a solution ๐‘ขโ„Žโˆถฮฉโ„Žโ†’โ„๐‘˜ of (2.20), (2.21) and there is ๐›ผโˆถ๐ปโˆ—โ†’โ„+ such that โ€–โ€–๎€ท๐‘ขโ„Žโˆ’๐‘ฃโ„Ž๎€ธ(๐‘Ÿ,๐‘š)โ€–โ€–โˆžโ‰ค๐›ผ(โ„Ž)on๐ธโ„Ž,limโ„Žโ†’0๐›ผ(โ„Ž)=0,(3.20)where ๐‘ฃโ„Ž is the restriction of ๐‘ฃ to the set ฮฉโ„Ž.

Proof. The existence of ๐‘ขโ„Ž follows from Theorem 3.3. Let ฮ“โ„Žโˆถ๐ธ๎…žโ„Žโ†’โ„๐‘˜, ฮ“0.โ„Žโˆถ๐ธ0.โ„Žโˆช๐œ•0๐ธโ„Žโ†’โ„๐‘˜ be defined by the relations๐›ฟ0๐‘ฃโ„Ž(๐‘Ÿ,๐‘š)=๐”ฝโ„Ž๎€บ๐‘ฃโ„Ž๎€ป(๐‘Ÿ,๐‘š)+ฮ“โ„Ž(๐‘Ÿ,๐‘š)on๐ธ๎…žโ„Ž,๐‘ฃ(3.21)โ„Ž(๐‘Ÿ,๐‘š)=๐œ‘โ„Ž(๐‘Ÿ+1,๐‘š)+ฮ“(๐‘Ÿ,๐‘š)0.โ„Ž๎€ท๐‘กfor(๐‘Ÿ),๐‘ฅ(๐‘š)๎€ธโˆˆ๐ธ0.โ„Žโˆช๐œ•0๐ธโ„Ž.(3.22)From Lemma 3.1 and from assumption (1) of the theorem it follows that there are ๐›พ,๐›พ0โˆถ๐ปโˆ—โ†’โ„+ such thatโ€–โ€–ฮ“โ„Ž(๐‘Ÿ,๐‘š)โ€–โ€–โˆžโ‰ค๐›พ(โ„Ž)on๐ธ๎…žโ„Ž,โ€–โ€–ฮ“(๐‘Ÿ,๐‘š)0.โ„Žโ€–โ€–โˆžโ‰ค๐›พ0(โ„Ž)on๐ธ0.โ„Žโˆช๐œ•0๐ธโ„Ž(3.23)and limโ„Žโ†’0๐›พ(โ„Ž)=0, limโ„Žโ†’0๐›พ0(โ„Ž)=0. Write ๐ฝ=[0,๐‘Ž] and ๐ฝโ„Ž={๐‘ก(๐‘Ÿ)โˆถ0โ‰ค๐‘Ÿโ‰ค๐‘0}. For ๐›ฝโˆถ๐ฝโ„Žโ†’โ„ we put ๐›ฝ(๐‘Ÿ)=๐›ฝ(๐‘ก(๐‘Ÿ)). Let ๐›ฝโ„Žโˆถ๐ฝโ„Žโ†’โ„+ be a solution of the difference problem๐›ฝ(๐‘Ÿ+1)=๐›ฝ(๐‘Ÿ)+โ„Ž0๐œŽ๎€ท๐‘ก(๐‘Ÿ),๐›ฝ(๐‘Ÿ)๎€ธ+โ„Ž0๐›พ(โ„Ž),0โ‰ค๐‘Ÿโ‰ค๐‘0โˆ’1,๐›ฝ(0)=๐›ผ0(โ„Ž).(3.24)We prove thatโ€–โ€–๎€ท๐‘ขโ„Žโˆ’๐‘ฃโ„Ž๎€ธ(๐‘Ÿ,๐‘š)โ€–โ€–โˆžโ‰ค๐›ฝโ„Ž(๐‘Ÿ)on๐ธโ„Ž.(3.25)Let ๎‚๐‘ฃโ„Ž๎ƒ€๐‘ฃ=(โ„Ž.1๎ƒ€๐‘ฃ,โ€ฆ,โ„Ž.๐‘˜)โˆถฮฉโ„Žโ†’โ„๐‘˜ be defined by๎ƒด๐‘ฃ(๐‘Ÿ,๐‘š)โ„Ž.๐‘–=๐‘ฃ(๐‘Ÿ,๐‘š)โ„Ž.๐‘–+๐›ฝโ„Ž(0)on๐ธ0.โ„Ž,๎ƒด๐‘ฃ(๐‘Ÿ,๐‘š)โ„Ž.๐‘–=๐‘ฃ(๐‘Ÿ,๐‘š)โ„Ž.๐‘–+๐›ฝโ„Ž(๐‘–)on๐ธโ„Žโˆช๐œ•0๐ธโ„Ž,(3.26) where ๐‘–=1,โ€ฆ,๐‘˜. We prove that the difference functional inequality๐›ฟ0๎‚๐‘ฃโ„Žโ‰ฅ๐”ฝโ„Ž๎€บ๎‚๐‘ฃโ„Ž๎€ป(๐‘Ÿ,๐‘š),๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š)๎€ธโˆˆ๐ธ๎…žโ„Ž,(3.27)is satisfied. It follows from Assumption (๐ป[๐‘“,๐œŽ]) and from (3.21) that๐›ฟ0๎ƒด๐‘ฃ(๐‘Ÿ,๐‘š)โ„Ž.๐‘–=๐›ฟ0๐‘ฃ(๐‘Ÿ,๐‘š)โ„Ž.๐‘–+1โ„Ž0๎€ท๐›ฝโ„Ž(๐‘Ÿ+1)โˆ’๐›ฝโ„Ž(๐‘Ÿ)๎€ธ=๐‘“๐‘–๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž๎€ท๎‚๐‘ฃโ„Ž๎€ธ[๐‘Ÿ,๐‘š]๎„Ÿ๐‘ฃ,๐›ฟ(๐‘Ÿ+1,๐‘š)โ„Ž.๐‘–๎€ธ+1โ„Ž0๎€ท๐›ฝโ„Ž(๐‘Ÿ+1)โˆ’๐›ฝโ„Ž(๐‘Ÿ)๎€ธ+๎€บ๐‘“๐‘–๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž๎€ท๐‘ฃโ„Ž๎€ธ[๐‘Ÿ,๐‘š],๐›ฟ๐‘ฃ(๐‘Ÿ+1,๐‘š)โ„Ž.๐‘–๎€ธโˆ’๐‘“๐‘–๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž๎€ท๎‚๐‘ฃโ„Ž๎€ธ[๐‘Ÿ,๐‘š],๐›ฟ๐‘ฃ(๐‘Ÿ+1,๐‘š)โ„Ž.๐‘–๎€ธ๎€ปโ‰ฅ๐‘“๐‘–๎€ท๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž๎€ท๎‚๐‘ฃโ„Ž๎€ธ[๐‘Ÿ,๐‘š]๎„Ÿ๐‘ฃ,๐›ฟ(๐‘Ÿ+1,๐‘š)โ„Ž.๐‘–๎€ธ๎€ท๐‘กโˆ’๐œŽ(๐‘Ÿ),๐›ฝโ„Ž(๐‘Ÿ)๎€ธ+1โ„Ž0๎€ท๐›ฝโ„Ž(๐‘Ÿ+1)โˆ’๐›ฝโ„Ž(๐‘Ÿ)๎€ธ=๐‘“๐‘–(๐‘ก(๐‘Ÿ),๐‘ฅ(๐‘š),๐‘‡โ„Ž(๎‚๐‘ฃโ„Ž)[๐‘Ÿ,๐‘š]๎„Ÿ๐‘ฃ,๐›ฟ(๐‘Ÿ+1,๐‘š)โ„Ž.๐‘–),๐‘–=1,โ€ฆ,๐‘˜.(3.28) This completes the proof of (3.27).
Since ๐‘ฃโ„Ž(๐‘Ÿ,๐‘š)โ‰ค๎ƒด๐‘ฃโ„Ž(๐‘Ÿ,๐‘š) on ๐ธ0.โ„Žโˆช๐œ•0๐ธโ„Ž, it follows from Theorem 2.3 that ๐‘ขโ„Ž(๐‘Ÿ,๐‘š)โ‰ค๐‘ฃโ„Ž(๐‘Ÿ,๐‘š)+๐›ฝโ„Ž(๐‘Ÿ) on ๐ธโ„Ž. In a similar way we prove that ๐‘ฃโ„Ž(๐‘Ÿ,๐‘š)โˆ’๐›ฝโ„Ž(๐‘Ÿ)โ‰ค๐‘ขโ„Ž(๐‘Ÿ,๐‘š) on ๐ธโ„Ž. The above estimates imply (3.25). Consider the Cauchy problem๐œ‚๎…ž(๐‘ก)=๐œŽ(๐‘ก,๐œ‚(๐‘ก))+๐›พ(โ„Ž),๐œ‚(0)=๐›ผ0(โ„Ž).(3.29)It follows from Assumption (๐ป[๐œŽ]) that there is ฬƒ๐œ€>0 such that for โ€–โ„Žโ€–โ‰คฬƒ๐œ€โ€‰โ€‰the maximal solution ๐œ‚(โ‹…,โ„Ž) of (3.29) is defined on [0,๐‘Ž] andlimโ„Žโ†’0๐œ‚(๐‘ก,โ„Ž)=0uniformlyon[0,๐‘Ž].(3.30)Since ๐œ‚(โ‹…,โ„Ž) is convex function then we have the difference inequality๐œ‚๎€ท๐‘ก(๐‘Ÿ+1)๎€ธ๎€ท๐‘ก,โ„Žโ‰ฅ๐œ‚(๐‘Ÿ)๎€ธ,โ„Ž+โ„Ž0๐œŽ๎€ท๐‘ก(๐‘Ÿ)๎€ท๐‘ก,๐œ‚(๐‘Ÿ),โ„Ž๎€ธ๎€ธ+โ„Ž0๐›พ(โ„Ž),(3.31)where 0โ‰ค๐‘Ÿโ‰ค๐‘0โˆ’1. Since ๐›ฝโ„Ž satisfies (3.24), the above relations imply the estimate๐›ฝโ„Ž(๐‘Ÿ)๎€ท๐‘กโ‰ค๐œ‚(๐‘Ÿ)๎€ธ,โ„Žโ‰ค๐œ‚(๐‘Ž,โ„Ž),0โ‰ค๐‘Ÿโ‰ค๐‘0.(3.32)It follows from (3.30) that condition (3.20) is satisfied with ๐›ผ(โ„Ž)=๐œ‚(๐‘Ž,โ„Ž). This completes the proof.

Lemma 3.5. Suppose that Assumption (๐ป[๐‘“]) is satisfied and
(1)๐‘ฃโˆถฮฉโ†’โ„ is a solution of (1.4), (1.5) and ๐‘ฃ is of class ๐ถ2 on ฮฉ,(2)โ„Žโˆˆ๐ปโˆ—, โ„Ž0<๐œ€ and ๐œ‘โ„Žโˆถ๐ธ0.โ„Žโˆช๐œ•0๐ธโ„Žโ†’โ„๐‘˜ and there is ๐›ผ0โˆถ๐ปโˆ—โ†’โ„+ such thatโ€–โ€–๐œ‘(๐‘Ÿ,๐‘š)โˆ’๐œ‘โ„Ž(๐‘Ÿ,๐‘š)โ€–โ€–โˆžโ‰ค๐›ผ0(โ„Ž)on๐ธ0.โ„Žโˆช๐œ•0๐ธโ„Ž,limโ„Žโ†’0๐›ผ0(โ„Ž)=0.(3.33)(3)there exists ๐ฟโˆˆโ„+ such that estimates๐‘“๐‘–(๐‘ก,๐‘ฅ,๐‘ค,๐‘ž)โˆ’๐‘“๐‘–๎‚๎‚(๐‘ก,๐‘ฅ,๐‘ค,๐‘ž)โ‰ค๐ฟโ€–๐‘คโˆ’๐‘คโ€–๐ท,๐‘–=1,โ€ฆ,๐‘˜,(3.34)are satisfied for (๐‘ก,๐‘ฅ,๐‘ž)โˆˆ๐ธร—โ„๐‘›, ๎‚๐‘ค,๐‘คโˆˆ๐ถ(๐ท,โ„๐‘˜) and ๎‚๐‘ค๐‘คโ‰ฅ,(4)there is ๐ถโˆˆโ„+ such thatโ€–โ€–๐œ•๐‘ž๐‘“๐‘–โ€–โ€–โ‰ค(๐‘ก,๐‘ฅ,๐‘ค,๐‘ž)๐ถonฮฃfor๐‘–=1,โ€ฆ,๐‘˜.(3.35) Under these assumptions there is a solution ๐‘ขโ„Žโˆถฮฉโ„Žโ†’โ„๐‘˜ of (2.20), (2.21), and โ€–โ€–๎€ท๐‘ขโ„Žโˆ’๐‘ฃโ„Ž๎€ธ(๐‘Ÿ,๐‘š)โ€–โ€–โˆžโ‰ค๎‚๐›ผ(โ„Ž)on๐ธโ„Ž,(3.36)where ๎‚๐›ผ(โ„Ž)=๐›ผ0(โ„Ž)๐‘’๐ฟ๐‘Ž๐‘’+ฬƒ๐›พ(โ„Ž)๐ฟ๐‘Žโˆ’1๐ฟif๐ฟ>0,๎‚๐›ผ(โ„Ž)=๐›ผ0๎‚(โ„Ž)+๐‘Žฬƒ๐›พ(โ„Ž)if๐ฟ=0,ฬƒ๐›พ(โ„Ž)=0.5๐ถโ„Ž0(1+๎‚๐ถ)+๐ฟ๐ถโ€–โ„Ž๎…žโ€–2+0.5๐ถ๎‚๐ถโ€–โ„Žโ€–(3.37)and ๎‚๐ถโˆˆโ„+ is such that โ€–โ€–๐œ•๐‘ก๐‘กโ€–โ€–๐‘ฃ(๐‘ก,๐‘ฅ)โˆž,โ€–โ€–๐œ•๐‘ก๐‘ฅ๐‘–โ€–โ€–๐‘ฃ(๐‘ก,๐‘ฅ)โˆž,โ€–โ€–๐œ•๐‘ฅ๐‘–๐‘ฅ๐‘—โ€–โ€–๐‘ฃ(๐‘ก,๐‘ฅ)โˆžโ‰ค๎‚๐ถ(3.38)on ฮฉ for ๐‘–,๐‘–=1,โ€ฆ,๐‘›.

Proof. It follows that the solution ๐›ฝโ„Žโˆถ๐ฝโ„Žโ†’โ„+ of the difference problem๐›ฝ(๐‘Ÿ+1)=๎€ท1+๐ฟโ„Ž0๎€ธ๐›ฝ(๐‘Ÿ)+โ„Ž0๐›พ(โ„Ž),0โ‰ค๐‘Ÿโ‰ค๐‘0๐›ฝโˆ’1,(0)=๐›ผ0(โ„Ž)(3.39) satisfies the condition: ๐›ฝโ„Ž(๐‘Ÿ)โ‰ค๎‚๐›ผ(โ„Ž) for 0โ‰ค๐‘Ÿโ‰ค๐‘0. Moreover we haveโ€–โ€–ฮ“โ„Ž(๐‘Ÿ,๐‘š)โ€–โ€–โˆžโ‰คฬƒ๐›พ(โ„Ž)on๐ธ๎…žโ„Ž,(3.40)where ฮ“โ„Ž is given by (3.21). Then we obtain the assertion from Lemma 3.2 and Theorem 3.4.

Remark 3.6. In the result on error estimates we need estimates for the derivatives of the solution ๐‘ฃ of problem (1.4), (1.5). One may obtain them by the method of differential inequalities, see [10, Chapter 5].

4. Numerical Examples

Example 4.1. For ๐‘›=2 we put ๐ธ=[0,0.5]ร—[โˆ’1,1]ร—[โˆ’1,1],๐ธ0={0}ร—[โˆ’1,1]ร—[โˆ’1,1].(4.1)Consider the differential integral equation๐œ•๐‘ก๎€บ๐‘ง(๐‘ก,๐‘ฅ,๐‘ฆ)=arctan2๐‘ฅ๐œ•๐‘ฅ๐‘ง(๐‘ก,๐‘ฅ,๐‘ฆ)+2๐‘ฆ๐œ•๐‘ฆ๎€ท๐‘ง(๐‘ก,๐‘ฅ,๐‘ฆ)โˆ’๐‘ก2๐‘ฅ2๐‘ฆ2โˆ’๐‘ฅ2โˆ’๐‘ฆ2๎€ธ๎€ป๎€ท๐‘ง(๐‘ก,๐‘ฅ,๐‘ฆ)+๐‘ก1โˆ’๐‘ฆ2๎€ธ๎€œ๐‘ฅโˆ’1๎€ท๐‘ ๐‘ง(๐‘ก,๐‘ ,๐‘ฆ)๐‘‘๐‘ +๐‘ก1โˆ’๐‘ฅ2๎€ธ๎€œ๐‘ฆโˆ’1๎€บ๎€ท๐‘ฅ๐‘ ๐‘ง(๐‘ก,๐‘ฅ,๐‘ )๐‘‘๐‘ +๐‘ง(๐‘ก,๐‘ฅ,๐‘ฆ)4+0.252๐‘ฆโˆ’1๎€ธ๎€ท2โˆ’1๎€ธ๎€ปโˆ’4(4.2) with the initial boundary condition๐‘ง(0,๐‘ฅ,๐‘ฆ)=1,(๐‘ฅ,๐‘ฆ)โˆˆ[โˆ’1,1]ร—[โˆ’1,1],๐‘ง(๐‘ก,โˆ’1,๐‘ฆ)=๐‘ง(๐‘ก,1,๐‘ฆ)=1,(๐‘ก,๐‘ฆ)โˆˆ[0,0.5]ร—[โˆ’1,1],๐‘ง(๐‘ก,๐‘ฅ,โˆ’1)=๐‘ง(๐‘ก,๐‘ฅ,1)=1,(๐‘ก,๐‘ฅ)โˆˆ[0,0.5]ร—[โˆ’1,1].(4.3)

The function ๐‘ฃ(๐‘ก,๐‘ฅ,๐‘ฆ)=exp[0.25๐‘ก(๐‘ฅ2โˆ’1)(๐‘ฆ2โˆ’1)] is the solution of the above problem. Let us denote by ๐‘งโ„Ž an approximate solution which is obtained by using the implicit difference scheme.

The Newton method is used for solving nonlinear systems generated by the implicit difference scheme. Write ๐‘š=(๐‘š1,๐‘š2) and๐œ€โ„Ž(๐‘Ÿ)=1๎€ท2๐‘1โˆ’1๎€ธ๎€ท2๐‘2๎€ธ๎“โˆ’1๐‘šโˆˆฮ ||๐‘งโ„Ž(๐‘Ÿ,๐‘š)โˆ’๐‘ฃ(๐‘Ÿ,๐‘š)||,0โ‰ค๐‘Ÿโ‰ค๐‘0,(4.4)where๎€ฝ๎€ท๐‘šฮ =๐‘š=1,๐‘š2๎€ธโˆถโˆˆโ„ค2โˆถโˆ’๐‘1+1โ‰ค๐‘š1โ‰ค๐‘1โˆ’1,โˆ’๐‘1+1โ‰ค๐‘š2โ‰ค๐‘2๎€พโˆ’1(4.5)and ๐‘1โ„Ž1=1, ๐‘2โ„Ž2=1, ๐‘0โ„Ž0=0.5. The numbers ๐œ€โ„Ž(๐‘Ÿ) can be called average errors of the difference method for fixed ๐‘ก(๐‘Ÿ). We put โ„Ž0=โ„Ž1=โ„Ž2=0.005 and we have the values of the above defined errors which are shown in Table 1.

Note that our equation and the steps of the mesh do not satisfy condition (1.10) which is necessary for the explicit difference method to be convergent. In our numerical example the average errors for the explicit difference method exceeded 102.

Example 4.2. Let ๐‘›=2 and ๐ธ=[0,0.5]ร—[โˆ’0.5,0.5]ร—[โˆ’0.5,0.5],๐ธ0={0}ร—[โˆ’0.5,0.5]ร—[โˆ’0.5,0.5].(4.6)Consider the differential equation with deviated variables๐œ•๐‘ก๐‘ง(๐‘ก,๐‘ฅ,๐‘ฆ)=2๐‘ฅ๐œ•๐‘ฅ๐‘ง(๐‘ก,๐‘ฅ,๐‘ฆ)+2๐‘ฆ๐œ•๐‘ฆ๎€บ๐‘ง(๐‘ก,๐‘ฅ,๐‘ฆ)+cos2๐‘ฅ๐œ•๐‘ฅ๐‘ง(๐‘ก,๐‘ฅ,๐‘ฆ)โˆ’2๐‘ฆ๐œ•๐‘ฆ๎€ท๐‘ฅ๐‘ง(๐‘ก,๐‘ฅ,๐‘ฆ)โˆ’๐‘ก2โˆ’๐‘ฆ2๎€ธ๎€ป+๎”๐‘ง(๐‘ก,๐‘ฅ,๐‘ฆ)๐‘ง๎€ท๐‘ก2๎€ธ,๐‘ฅ,๐‘ฆ+๐‘“(๐‘ก,๐‘ฅ,๐‘ฆ)๐‘ง(๐‘ก,๐‘ฅ,๐‘ฆ)โˆ’1,(4.7) with the initial boundary conditions๐‘ง(0,๐‘ฅ,๐‘ฆ)=1,(๐‘ฅ,๐‘ฆ)โˆˆ[โˆ’0.5,0.5]ร—[โˆ’0.5,0.5]๐‘ง(๐‘ก,โˆ’0.5,๐‘ฆ)=๐‘ง(๐‘ก,0.5,๐‘ฆ)=1,(๐‘ก,๐‘ฆ)โˆˆ[0,0.5]ร—[โˆ’0.5,0.5],๐‘ง(๐‘ก,๐‘ฅ,โˆ’0.5)=๐‘ง(๐‘ก,๐‘ฅ,0,5)=1,(๐‘ก,๐‘ฅ)โˆˆ[0,0.5]ร—[โˆ’0.5,0.5],(4.8) where๎€ท๐‘ฅ๐‘“(๐‘ก,๐‘ฅ,๐‘ฆ)=2โˆ’0.25๎€ธ๎€ท0.25โˆ’๐‘ฆ2๎€ธ๎€บ+๐‘ก8๐‘ฅ2๐‘ฆ2โˆ’๐‘ฅ2โˆ’๐‘ฆ2๎€ปโˆ’exp๎€ฝ๎€ท0.5๐‘ก2๐‘ฅโˆ’๐‘ก๎€ธ๎€ท2โˆ’0.25๎€ธ๎€ท0.25โˆ’๐‘ฆ2.๎€ธ๎€พ(4.9)

The function ๐‘ฃ(๐‘ก,๐‘ฅ,๐‘ฆ)=exp[[๐‘ก(๐‘ฅ2โˆ’0.25)(0.25โˆ’๐‘ฆ2)] is the solution of the above problem. Let us denote by ๐‘งโ„Ž an approximate solution which is obtained by using the implicit difference scheme.

The Newton method is used for solving nonlinear systems generated by the implicit difference scheme.

Let ๐œ€โ„Ž be defined by (4.4) with ๐‘1โ„Ž1=0.5, ๐‘2โ„Ž2=0.5, ๐‘0โ„Ž0=0.5. We put โ„Ž0=โ„Ž1=โ„Ž2=0.005 and we have the values of the above defined errors which are shown in Table 2.

Note that our equation and the steps of the mesh do not satisfy condition (1.10) which is necessary for the explicit difference method to be convergent. In our numerical example the average errors for the explicit difference method exceeded 102.

The above examples show that there are implicit difference schemes which are convergent, and the corresponding classical method is not convergent. This is due to the fact that we need assumption (1.10) for explicit difference methods. We do not need this condition in our implicit methods.

Our results show that implicit difference schemes are convergent on all meshes.