Table of Contents Author Guidelines Submit a Manuscript
International Journal of Surgical Oncology
Volume 2012, Article ID 984346, 9 pages
http://dx.doi.org/10.1155/2012/984346
Research Article

Cell Polarity, Epithelial-Mesenchymal Transition, and Cell-Fate Decision Gene Expression in Ductal Carcinoma In Situ

1Department of Work Medicine “Clinica del Lavoro L. Devoto”, Section of Medical Statistics and Biometry “G.A. Maccacaro”, University of Milano, 20133 Milan, Italy
2Senology Center, Casa di Cura Ambrosiana, Istituto Sacra Famiglia, Cesano Boscone, 20090 Milano, Italy

Received 29 November 2011; Revised 17 January 2012; Accepted 25 January 2012

Academic Editor: Lucio Fortunato

Copyright © 2012 Danila Coradini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. A. Virnig, T. M. Tuttle, T. Shamliyan, and R. L. Kane, “Ductal carcinoma in Situ of the breast: a systematic review of incidence, treatment, and outcomes,” Journal of the National Cancer Institute, vol. 102, no. 3, pp. 170–178, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. C. J. Allegra, D. R. Aberle, P. Ganschow et al., “NIH state-of-the-science conference statement: diagnosis and management of ductal carcinoma in situ (DCIS),” NIH Consensus and State-of-the-Science Statements, vol. 26, no. 2, pp. 1–27, 2009. View at Google Scholar · View at Scopus
  3. N. P. Castro, C. A. B. T. Osório, C. Torres et al., “Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma,” Breast Cancer Research, vol. 10, no. 5, article no. R87, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. V. Espina, B. D. Mariani, R. I. Gallagher et al., “Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival,” PLoS One, vol. 5, no. 4, Article ID e10240, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. D. C. Sgroi, “Preinvasive breast cancer,” Annual Review of Pathology, vol. 5, pp. 193–221, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. H. M. Kuerer, C. T. Albarracin, W. T. Yang et al., “Ductal carcinoma in situ: state of the science and roadmap to advance the field,” Journal of Clinical Oncology, vol. 27, no. 2, pp. 279–288, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. L. C. Collins, R. M. Tamimi, H. J. Baer, J. L. Connolly, G. A. Colditz, and S. J. Schnitt, “Outcome of patients with ductal carcinoma in situ untreated after diagnostic biopsy: results from the nurses' health study,” Cancer, vol. 103, no. 9, pp. 1778–1784, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. Vincent-Salomon, C. Lucchesi, N. Gruel et al., “Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast,” Clinical Cancer Research, vol. 14, no. 7, pp. 1956–1965, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. R. M. Tamimi, H. J. Baer, J. Marotti et al., “Comparison of molecular phenotypes of ductal carcinoma in situ and invasive breast cancer,” Breast Cancer Research, vol. 10, no. 4, article no. R67, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. D. C. Allred, Y. Wu, S. Mao et al., “Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution,” Clinical Cancer Research, vol. 14, no. 2, pp. 370–378, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. L. A. Emery, A. Tripathi, C. King et al., “Early dysregulation of cell adhesion and extracellular matrix pathways in breast cancer progression,” American Journal of Pathology, vol. 175, no. 3, pp. 1292–1302, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. L. Gauthier, H. K. Berman, C. Miller et al., “Abrogated response to cellular stress identifies DCIS associated with subsequent tumor events and defines basal-like breast tumors,” Cancer Cell, vol. 12, no. 5, pp. 479–491, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. E. Tomaskovic-Crook, E. W. Thompson, and J. P. Thiery, “Epithelial to mesenchymal transition and breast cancer,” Breast Cancer Research, vol. 11, no. 6, article no. 213, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. R. Derynck, R. J. Akhurst, and A. Balmain, “TGF-β signaling in tumor suppression and cancer progression,” Nature Genetics, vol. 29, no. 2, pp. 117–129, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. J. Xu, S. Lamouille, and R. Derynck, “TGF-β-induced epithelial to mesenchymal transition,” Cell Research, vol. 19, no. 2, pp. 156–172, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. C. H. Heldin, M. Landström, and A. Moustakas, “Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition,” Current Opinion in Cell Biology, vol. 21, no. 2, pp. 166–176, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. S. A. Mani, W. Guo, M. J. Liao et al., “The epithelial-mesenchymal transition generates cells with properties of stem cells,” Cell, vol. 133, no. 4, pp. 704–715, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. A. P. Morel, M. Lièvre, C. Thomas, G. Hinkal, S. Ansieau, and A. Puisieux, “Generation of breast cancer stem cells through epithelial-mesenchymal transition,” PLoS One, vol. 3, no. 8, Article ID e2888, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. C. J. Creighton, J. C. Chang, and J. M. Rosen, “Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer,” Journal of Mammary Gland Biology and Neoplasia, vol. 15, no. 2, pp. 253–260, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. G. Moreno-Bueno, F. Portillo, and A. Cano, “Transcriptional regulation of cell polarity in EMT and cancer,” Oncogene, vol. 27, no. 55, pp. 6958–6969, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. P. T. Simpson, J. S. Reis-Filho, T. Gale, and S. R. Lakhani, “Molecular evolution of breat cancer,” Journal of Pathology, vol. 205, no. 2, pp. 248–254, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. D. S. Micalizzi and H. L. Ford, “Epithelial-mesenchymal transition in development and cancer,” Future Oncology, vol. 5, no. 8, pp. 1129–1143, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. T. Blick, E. Widodo, H. Hugo et al., “Epithelial mesenchymal transition traits in human breast cancer cell lines,” Clinical and Experimental Metastasis, vol. 25, no. 6, pp. 629–642, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. A. Wodarz and I. Näthke, “Cell polarity in development and cancer,” Nature Cell Biology, vol. 9, no. 9, pp. 1016–1024, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. H. A. J. Müller, “Genetic control of epithelial cell polarity: lessons from Drosophila,” Developmental Dynamics, vol. 218, no. 1, pp. 52–67, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Martin-Belmonte and K. Mostov, “Regulation of cell polarity during epithelial morphogenesis,” Current Opinion in Cell Biology, vol. 20, no. 2, pp. 227–234, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. M. Liu, M. C. Casimiro, C. Wang et al., “p21CIP1 attenuates Ras- and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 45, pp. 19035–19039, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. A. Lugli, G. Iezzi, I. Hostettler et al., “Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer,” British Journal of Cancer, vol. 103, no. 3, pp. 382–390, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. J. C. Lawson, G. L. Blatch, and A. L. Edkins, “Cancer stem cells in breast cancer and metastasis,” Breast Cancer Research and Treatment, vol. 118, no. 2, pp. 241–254, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. B. Manavathi, K. Singh, and R. Kumar, “MTA family of coregulators in nuclear receptor biology and pathology,” Nuclear Receptor Signaling, vol. 5, article e010, 2007. View at Google Scholar · View at Scopus
  31. N. Fujita, M. Kajita, P. Taysavang, and P. A. Wade, “Hormonal regulation of metastasis-associated protein 3 transcription in breast cancer cells,” Molecular Endocrinology, vol. 18, no. 12, pp. 2937–2949, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. J. Xu, R. C. Wu, and B. W. O'Malley, “Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family,” Nature Reviews Cancer, vol. 9, no. 9, pp. 615–630, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. A. E. Greijer, P. van der Groep, D. Kemming et al., “Up-regualtion of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor I (HIF-I),” Journal of Pathology, vol. 206, no. 3, pp. 291–304, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. S. F. Schoppmann, D. Tamandl, L. Roberts et al., “HER2/neu expression correlates with vascular endothelial growth factor-C and lymphangiogenesis in lymph node-positive breast cancer,” Annals of Oncology, vol. 21, no. 5, pp. 955–960, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. H. Kouros-Mehr, J. W. Kim, S. K. Bechis, and Z. Werb, “GATA-3 and the regulation of the mammary luminal cell fate,” Current Opinion in Cell Biology, vol. 20, no. 2, pp. 164–170, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. M. L. Asselin-Labat, K. D. Sutherland, H. Barker et al., “Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation,” Nature Cell Biology, vol. 9, no. 2, pp. 201–209, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. D. M. Abd El-Rehim, S. E. Pinder, C. E. Paish et al., “Expression of luminal and basal cytokeratins in human breast carcinoma,” Journal of Pathology, vol. 203, no. 2, pp. 661–671, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. K. A. Hoadley, V. J. Weigman, C. Fan et al., “EGFR associated expression profiles vary with breast tumor subtype,” BMC Genomics, vol. 8, article no. 258, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. F. Ferrari, S. Bortoluzzi, A. Coppe et al., “Novel definition files for human GeneChips based on GeneAnnot,” BMC Bioinformatics, vol. 8, article no. 446, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate. A practical and powerful approach to multiple testing,” Journal of Royal Statistical Society B, vol. 57, pp. 284–300, 1995. View at Google Scholar
  41. F. Husson, S. Lê, and J. Pagès, Exploratory Multivariate Analysis by Example Using R, Computer Science and Data Analysis Series, CRC Press, Boca Raton, Fla, USA, 2010.
  42. J. D. Jobson, Applied Multivariate Data Analysis. Volume 2. Categorical and Multivariate Methods, Springer, Berlin, Germany, 1992.
  43. K. E. Sleeman, H. Kendrick, A. Ashworth, C. M. Isacke, and M. J. Smalley, “CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells,” Breast Cancer Research, vol. 8, no. 1, article no. R7, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. D. Ponti, A. Costa, N. Zaffaroni et al., “Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties,” Cancer Research, vol. 65, no. 13, pp. 5506–5511, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. G. Dontu, D. El-Ashry, and M. S. Wicha, “Breast cancer, stem/progenitor cells and the estrogen receptor,” Trends in Endocrinology and Metabolism, vol. 15, no. 5, pp. 193–197, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. C. Casarsa, N. Bassani, F. Ambrogi et al., “Epithelial-to-mesenchymal transition, cell polarity and stemness-associated features in malignant pleural mesothelioma,” Cancer Letters, vol. 302, no. 2, pp. 136–143, 2011. View at Publisher · View at Google Scholar · View at PubMed
  47. O. W. Petersen and K. Polyak, “Stem cells in the human breast,” Cold Spring Harbor perspectives in biology, vol. 2, no. 5, Article ID a003160, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. B. Tiede and Y. Kang, “From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer,” Cell Research, vol. 21, no. 2, pp. 245–257, 2011. View at Publisher · View at Google Scholar · View at PubMed
  49. A. P. Bracken, N. Dietrich, D. Pasini, K. H. Hansen, and K. Helin, “Genome-wide mapping of polycomb target genes unravels their roles in cell fate transitions,” Genes and Development, vol. 20, no. 9, pp. 1123–1136, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. A. M. Pietersen, B. Evers, A. A. Prasad et al., “Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium,” Current Biology, vol. 18, no. 14, pp. 1094–1099, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. L. Tickenbrock, S. Hehn, B. Sargin et al., “Activation of Wnt signalling in acute myeloid leukemia by induction of Frizzled-4,” International Journal of Oncology, vol. 33, no. 6, pp. 1215–1221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. A. M. Band and M. Laiho, “Crosstalk of TGF-β and estrogen receptor signaling in breast cancer,” Journal of Mammary Gland Biology and Neoplasia, vol. 16, no. 2, pp. 109–115, 2011. View at Publisher · View at Google Scholar · View at PubMed
  53. G. Dontu, K. W. Jackson, E. McNicholas, M. J. Kawamura, W. M. Abdallah, and M. S. Wicha, “Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells,” Breast Cancer Research, vol. 6, no. 6, pp. R605–615, 2004. View at Google Scholar · View at Scopus
  54. T. Suzuki, Y. Miki, N. Ohuchi, and H. Sasano, “Intratumoral estrogen production in breast carcinoma: significance of aromatase,” Breast Cancer, vol. 15, no. 4, pp. 270–277, 2008. View at Google Scholar · View at Scopus
  55. G. Hudelist, P. Wülfing, C. Kersting et al., “Expression of aromatase and estrogen sulfotransferase in preinvasive and invasive breast cancer,” Journal of Cancer Research and Clinical Oncology, vol. 134, no. 1, pp. 67–73, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. E. S. Díaz-Cruz, Y. Sugimoto, G. I. Gallicano, R. W. Brueggemeier, and P. A. Furth, “Comparison of increased aromatase versus ERα in the generation of mammary hyperplasia and cancer,” Cancer Research, vol. 71, no. 16, pp. 5477–5487, 2011. View at Publisher · View at Google Scholar · View at PubMed
  57. R. Shibuya, T. Suzuki, Y. Miki et al., “Intratumoral concentration of sex steroids and expression of sex steroid-producing enzymes in ductal carcinoma in situ of human breast,” Endocrine-Related Cancer, vol. 15, no. 1, pp. 113–124, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. P. E. Lønning, “The potency and clinical efficacy of aromatase inhibitors across the breast cancer continuum,” Annals of Oncology, vol. 22, no. 3, pp. 503–514, 2011. View at Publisher · View at Google Scholar · View at PubMed