Table of Contents
International Journal of Tissue Engineering
Volume 2013 (2013), Article ID 407047, 9 pages
Research Article

Biomanufacturing versus Superficial Cell Seeding: Simulation of Chondrocyte Proliferation in a Cylindrical Cartilage Scaffold

Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A9

Received 23 March 2013; Revised 18 May 2013; Accepted 20 May 2013

Academic Editor: Eng San Thian

Copyright © 2013 Mohammad Izadifar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Local volume averaging approach was used for modeling and simulation of cell growth and proliferation, as well as glucose transfer within a cylindrical cartilage scaffold during cell cultivation. The scaffold matrix including the nutrient solution filling spaces among seeded cell colonies was treated as a porous medium. Applying differential mass balance of cells and glucose to a representative elementary volume of the scaffold, two diffusional mass transfer models were developed based on local volume averaged properties. The derived governing equations take into account time-dependent glucose diffusion, glucose consumption by cells, cell migration, apoptosis, and cell reproduction within the scaffold. Since the volumetric fraction of cells in the scaffold relies on cell growth, which strongly depends on glucose concentration in the scaffold, the governing equations were solved simultaneously using implicit finite difference method and Gauss-Seidel technique. Simulation results showed that cell volumetric fraction of the scaffold can reach about 45% after 50 days if a culture medium with a glucose concentration of 45 kgm−3 is used. Also, simulation results indicate that more uniform and higher average cell volume fraction of the scaffold can be obtained if biomanufacturing-based cell seeding is used across the scaffold rather than cell seeding on the scaffold surface.