Table of Contents Author Guidelines Submit a Manuscript
International Journal of Vascular Medicine
Volume 2012 (2012), Article ID 898769, 7 pages
http://dx.doi.org/10.1155/2012/898769
Research Article

Lipofundin-Induced Hyperlipidemia Promotes Oxidative Stress and Atherosclerotic Lesions in New Zealand White Rabbits

1Center of Studies for Research and Biological Evaluations, Pharmacy and Food Science College, University of Havana, PO. Box 13 600, La Coronela, La Lisa, Havana 13600, Cuba
2Department of Antibody Engineering, Center of Molecular Immunology, Havana 11600, Cuba
3Department of Electron Microscopy, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
4MediNat, 60021 Ancona, Italy

Received 1 April 2011; Revised 21 June 2011; Accepted 23 July 2011

Academic Editor: Spencer D. Proctor

Copyright © 2012 Livan Delgado Roche et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Tavori, M. Aviram, S. Khatib et al., “Human carotid atherosclerotic plaque increases oxidative state of macrophages and low-density lipoproteins, whereas paraoxonase 1 (PON1) decreases such atherogenic effects,” Free Radical Biology and Medicine, vol. 46, no. 5, pp. 607–615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. K. J. Williams and I. Tabas, “The response-to-retention hypothesis of early atherogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 5, pp. 551–562, 1995. View at Google Scholar · View at Scopus
  3. D. Steinberg, S. Parthasarathy, T. E. Carew, J. C. Khoo, and J. L. Witztum, “Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity,” The New England Journal of Medicine, vol. 320, no. 14, pp. 915–924, 1989. View at Google Scholar · View at Scopus
  4. D. Steinberg, “Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime,” Nature Medicine, vol. 8, no. 11, pp. 1211–1217, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Stocker and J. F. Keaney, “Role of oxidative modifications in atherosclerosis,” Physiological Reviews, vol. 84, no. 4, pp. 1381–1478, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Scoczynska, “The role of lipids in atherogenesis,” Postępy Higieny i Medycyny Doświadczalnej, vol. 59, pp. 346–357, 2005. View at Google Scholar
  7. H. Jellinek, J. Harsing, and S. Fuzesi, “A new model for arteriosclerosis. An electron-microscopic study of the lesions induced by i.v. administered fat,” Atherosclerosis, vol. 43, no. 1, pp. 7–8, 1982. View at Google Scholar · View at Scopus
  8. M. Noa and R. Más, “Ateromixol y lesión ateroesclerótica en Conejos inducida por Lipofundin,” Progresos en Ciencias Médicas, vol. 6, pp. 14–19, 1992. View at Google Scholar
  9. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  10. Boehringer Mannheim, Biochemica Information. A Revised Biochemical Reference Source. Enzymes for Routine, Boehringer Mannheim, Berlin, Germany, 1st edition, 1987.
  11. J. Sedlak and R. H. Lindsay, “Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent,” Analytical Biochemistry, vol. 25, no. C, pp. 192–205, 1968. View at Google Scholar · View at Scopus
  12. V. Witko-Sarsat, M. Friedlander, T. N. Khoa et al., “Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure,” Journal of Immunology, vol. 161, no. 5, pp. 2524–2532, 1998. View at Google Scholar · View at Scopus
  13. H. Esterbauer and K. H. Cheeseman, “Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal,” Methods in Enzymology, vol. 186, pp. 407–421, 1990. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Erdelmeier, D. Gerard-Monnier, J. C. Yadan, and J. Chaudiere, “Reactions of N-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Mechanistic aspects of the colorimetric assay of lipid peroxidation,” Chemical Research in Toxicology, vol. 11, pp. 1184–1194, 1998. View at Google Scholar
  15. G. Ozdemirler, G. Mehmetcik, S. Oztezcan, G. Toker, A. Sivas, and M. Uysal, “Peroxidation potential and antioxidant activity of serum in patients with diabetes mellitus and myocardial infarction,” Hormone and Metabolic Research, vol. 27, pp. 194–196, 1995. View at Google Scholar
  16. D. L. Granger, R. R. Taintor, K. S. Boockvar, and J. B. Hibbs, “Determination of nitrate and nitrite in biological samples using bacterial nitrate reductase coupled with the Griess reaction,” Methods, vol. 7, no. 1, pp. 78–83, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. T. B. Horwich, A. F. Hernandez, D. Dai, C. W. Yancy, and G. C. Fonarow, “Cholesterol levels and in-hospital mortality in patients with acute decompensated heart failure,” American Heart Journal, vol. 156, no. 6, pp. 1170–1176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. J. Hur, M. Du, K. Nam, M. Williamson, and D. U. Ahn, “Effect of dietary fats on blood cholesterol and lipid and the development of atherosclerosis in rabbits,” Nutrition Research, vol. 25, no. 10, pp. 925–935, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. K. S. Jain, M. K. Kathiravan, R. S. Somani, and C. J. Shishoo, “The biology and chemistry of hyperlipidemia,” Bioorganic and Medicinal Chemistry, vol. 15, no. 14, pp. 4674–4699, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. L. A. Carlson, “Studies on the fat emulsion Intralipid. I. Association of serum proteins to Intralipid triglyceride particles (ITP),” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 40, no. 2, pp. 139–144, 1980. View at Google Scholar · View at Scopus
  21. S. Hailer and G. Wolfram, “Influence of artificial fat emulsions on the composition of serum lipoproteins in humans,” American Journal of Clinical Nutrition, vol. 43, no. 2, pp. 225–233, 1986. View at Google Scholar · View at Scopus
  22. J. R. Wetterau and D. B. Zilversmit, “Purification and characterization of microsomal triglyceride and cholesteryl ester transfer protein from bovine liver microsomes,” Chemistry and Physics of Lipids, vol. 38, no. 1-2, pp. 205–222, 1985. View at Google Scholar · View at Scopus
  23. R. Frikke-Schmidt, B. G. Nordestgaard, M. C. A. Stene et al., “Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease,” Journal of the American Medical Association, vol. 299, no. 21, pp. 2524–2532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. B. F. Asztalos and E. J. Schaefer, “High-density lipoprotein subpopulations in pathologic conditions,” American Journal of Cardiology, vol. 91, no. 7, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. E. M. Tsompanidi, M. S. Brinkmeier, E. H. Fotiadou, S. M. Giakoumi, and K. E. Kypreos, “HDL biogenesis and functions: role of HDL quality and quantity in atherosclerosis,” Atherosclerosis, vol. 208, no. 1, pp. 3–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. D. P. Jones, “Redefining oxidative stress,” Antioxidants and Redox Signaling, vol. 8, no. 9-10, pp. 1865–1879, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Sadidi, S. I. Lentz, and E. L. Feldman, “Hydrogen peroxide-induced Akt phosphorylation regulates Bax activation,” Biochimie, vol. 91, no. 5, pp. 577–585, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Ashfaq, J. L. Abramson, D. P. Jones et al., “The relationship between plasma levels of oxidized and reduced thiols and early atherosclerosis in healthy adults,” Journal of the American College of Cardiology, vol. 47, no. 5, pp. 1005–1011, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Zhao and G. X. Shen, “Functional modulation of antioxidant enzymes in vascular endothelial cells by glycated LDL,” Atherosclerosis, vol. 179, no. 2, pp. 277–284, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. L. D. Roche, E. A. Medina, Y. Hernández-Matos, M. A. Bécquer Viart, A. M. Vázquez López, and E. Fernández-Sánchez, “High levels of lipid peroxidation induced by Lipofundin administration correlate with atherosclerotic lesions in rabbits,” Pharmacologyonline, vol. 3, pp. 727–736, 2010. View at Google Scholar · View at Scopus
  31. S. Tani, K. Nagao, T. Anazawa et al., “Association of plasma level of malondialdehyde-modified low-density lipoprotein with coronary plaque morphology in patients with coronary spastic angina: implication of acute coronary events,” International Journal of Cardiology, vol. 135, no. 2, pp. 202–206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Martínez-Sánchez, I. Popov, G. Pérez-Davison et al., “Contribution to characterization of oxidative stress in diabetic patients with macroangiopatic complications,” Acta Farmaceutica Bonaerense, vol. 24, no. 2, pp. 197–203, 2005. View at Google Scholar · View at Scopus
  33. J. M. McCord and I. Fridovich, “Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein),” Journal of Biological Chemistry, vol. 244, no. 22, pp. 6049–6055, 1969. View at Google Scholar · View at Scopus
  34. B. M. Babior, J. D. Lambeth, and W. Nauseef, “The neutrophil NADPH oxidase,” Archives of Biochemistry and Biophysics, vol. 397, no. 2, pp. 342–344, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Stralin, K. Karlson, B. O. Johansson, and S. L. Marklund, “The interstitium of the human arterial wall contain very large amounts of extracellular superoxide dismutase,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, pp. 32–36, 1995. View at Google Scholar
  36. R. Ginnan, B. J. Guikema, K. E. Halligan, H. A. Singer, and D. Jourd'heuil, “Regulation of smooth muscle by inducible nitric oxide synthase and NADPH oxidase in vascular proliferative diseases,” Free Radical Biology and Medicine, vol. 44, no. 7, pp. 1232–1245, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Deisseroth and A. L. Dounce, “Catalase: physical and chemical properties, mechanism of catalysis, and physiological role,” Physiological Reviews, vol. 50, no. 3, pp. 319–375, 1970. View at Google Scholar · View at Scopus
  38. S. J. Lin, S. K. Shyue, M. C. Shih et al., “Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors,” Atherosclerosis, vol. 190, no. 1, pp. 124–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. M. R. Brown, F. J. Miller, W. G. Li et al., “Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells,” Circulation Research, vol. 85, no. 6, pp. 524–533, 1999. View at Google Scholar · View at Scopus
  40. M. L. Circu and T. Y. Aw, “Glutathione and apoptosis,” Free Radical Research, vol. 42, no. 8, pp. 689–706, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Rahman, S. K. Biswas, L. A. Jimenez, M. Torres, and H. J. Forman, “Glutathione, stress responses, and redox signaling in lung inflammation,” Antioxidants and Redox Signaling, vol. 7, no. 1-2, pp. 42–59, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Hiyash, K. Yano, H. Matusri, H. Yakao, Y. Hattori, and A. Igushi, “Nitric oxide and endothelial senescence,” Pharmacology ' Therapeutics, vol. 120, pp. 333–339, 2008. View at Google Scholar
  43. P. Pacher, J. S. Beckman, and L. Liaudet, “Nitric oxide and peroxynitrite in health and disease,” Physiological Reviews, vol. 87, no. 1, pp. 315–424, 2007. View at Publisher · View at Google Scholar · View at Scopus