Table of Contents Author Guidelines Submit a Manuscript
International Journal of Vascular Medicine
Volume 2013 (2013), Article ID 482728, 7 pages
http://dx.doi.org/10.1155/2013/482728
Clinical Study

The Inflammatory Response to Ruptured Abdominal Aortic Aneurysm Is Altered by Endovascular Repair

Vascular and Endovascular Surgery Unit, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, UK

Received 17 July 2013; Accepted 22 September 2013

Academic Editor: Mark Morasch

Copyright © 2013 R. R. Makar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. A. Deitch, “Multiple organ failure: pathophysiology and potential future therapy,” Annals of Surgery, vol. 216, no. 2, pp. 117–134, 1992. View at Google Scholar · View at Scopus
  2. H. Sies and W. Stahl, “Vitamins E and C, β-carotene, and other carotenoids as antioxidants,” American Journal of Clinical Nutrition, vol. 62, no. 6, supplement, pp. 1315S–1321S, 1995. View at Google Scholar · View at Scopus
  3. K. B. Beckman and B. N. Ames, “The free radical theory of aging matures,” Physiological Reviews, vol. 78, no. 2, pp. 547–581, 1998. View at Google Scholar · View at Scopus
  4. B. Halliwell, S. Chirico, M. A. Crawford, K. S. Bjerve, and K. F. Gey, “Lipid peroxidation: its mechanism, measurement, and significance,” American Journal of Clinical Nutrition, vol. 57, no. 5, supplement, pp. 715S–724S, 1993. View at Google Scholar · View at Scopus
  5. N. C. Hickey, O. Hudlicka, P. Gosling, C. P. Shearman, and M. H. Simms, “Intermittent claudication incites systemic neutrophil activation and increased vascular permeability,” British Journal of Surgery, vol. 80, no. 2, pp. 181–184, 1993. View at Google Scholar · View at Scopus
  6. M. B. Grisham, L. Anzueto Hernandez, and D. N. Granger, “Xanthine oxidase and neutrophil infiltration in intestinal ischemia,” American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 251, no. 4, pp. G567–G574, 1986. View at Google Scholar · View at Scopus
  7. P. J. Spagnuolo, J. J. Ellner, A. Hassid, and M. J. Dunn, “Thromboxane A2 mediates augmented polymorphonuclear leukocyte adhesiveness,” Journal of Clinical Investigation, vol. 66, no. 3, pp. 406–414, 1980. View at Google Scholar · View at Scopus
  8. S. J. Weiss, “Tissue destruction by neutrophils,” New England Journal of Medicine, vol. 320, no. 6, pp. 365–376, 1989. View at Google Scholar · View at Scopus
  9. H. Tanaka, H. Sugimoto, T. Yoshioka, and T. Sugimoto, “Role of granulocyte elastase in tissue injury in patients with septic shock complicated by multiple-organ failure,” Annals of Surgery, vol. 213, no. 1, pp. 81–85, 1991. View at Google Scholar · View at Scopus
  10. S. Fujishima, H. Morisaki, A. Ishizaka et al., “Neutrophil elastase and systemic inflammatory response syndrome in the initiation and development of acute lung injury among critically ill patients,” Biomedicine and Pharmacotherapy, vol. 62, no. 5, pp. 333–338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. L. Lau, K. R. Gardiner, L. Martin et al., “Extraperitoneal approach reduces neutrophil activation, systemic inflammatory response and organ dysfunction in aortic aneurysm surgery,” European Journal of Vascular and Endovascular Surgery, vol. 21, no. 4, pp. 326–333, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. P. G. H. Metnitz, C. Bartens, M. Fischer, P. Fridrich, H. Steltzer, and W. Druml, “Antioxidant status in patients with acute respiratory distress syndrome,” Intensive Care Medicine, vol. 25, no. 2, pp. 180–185, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Brown, S. Dugdill, M. Wyatt, and D. Mantle, “Serum total antioxidant status during vascular surgery,” Biochemical Society Transactions, vol. 26, no. 2, article S127, 1998. View at Google Scholar · View at Scopus
  14. D. D. M. Wayner, G. W. Burton, K. U. Ingold, L. R. C. Barclay, and S. J. Locke, “The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma,” Biochimica et Biophysica Acta, vol. 924, no. 3, pp. 408–419, 1987. View at Google Scholar · View at Scopus
  15. P. Di Mascio, S. Kaiser, and H. Sies, “Lycopene as the most efficient biological carotenoid singlet oxygen quencher,” Archives of Biochemistry and Biophysics, vol. 274, no. 2, pp. 532–538, 1989. View at Google Scholar · View at Scopus
  16. R. R. Makar, S. A. Badger, M. E. O'Donnell, W. Loan, L. L. Lau, and C. V. Soong, “The effects of abdominal compartment hypertension after open and endovascular repair of a ruptured abdominal aortic aneurysm,” Journal of Vascular Surgery, vol. 49, no. 4, pp. 866–872, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. M. H. Roumen, T. Hendriks, J. Van der Ven-Jongekrijg et al., “Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma: relation with subsequent adult respiratory distress syndrome and multiple organ failure,” Annals of Surgery, vol. 218, no. 6, pp. 769–776, 1993. View at Google Scholar · View at Scopus
  18. R. G. Holzheimer, J. Gross, and M. Schein, “Pro- and anti-inflammatory cytokine-response in abdominal aortic aneurysm repair: a clinical model of ischemia-reperfusion,” Shock, vol. 11, no. 5, pp. 305–310, 1999. View at Google Scholar · View at Scopus
  19. A. Cabie, J.-C. Farkas, C. Fitting et al., “High levels of portal TNF-α during abdominal aortic surgery in man,” Cytokine, vol. 5, no. 5, pp. 448–453, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. T. E. Rowlands and S. Homer-Vanniasinkam, “Pro- and anti-inflammatory cytokine release in open versus endovascular repair of abdominal aortic aneurysm,” British Journal of Surgery, vol. 88, no. 10, pp. 1335–1340, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. M. G. Mythen, G. Purdy, I. J. Mackie, T. McNally, A. R. Webb, and S. J. Machin, “Postoperative multiple organ dysfunction syndrome associated with gut mucosal hypoperfusion, increased neutrophil degranulation and C1-esterase inhibitor depletion,” British Journal of Anaesthesia, vol. 71, no. 6, pp. 858–863, 1993. View at Google Scholar · View at Scopus
  22. P. Swartbol, L. Truedsson, and L. Norgren, “Adverse reactions during endovascular treatment of aortic aneurysms may be triggered by interleukin 6 release from the thrombotic content,” Journal of Vascular Surgery, vol. 28, no. 4, pp. 664–668, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. Thompson, A. Nasim, R. D. Sayers et al., “Oxygen free radical and cytokine generation during endovascular and conventional aneurysm repair,” European Journal of Vascular and Endovascular Surgery, vol. 12, no. 1, pp. 70–75, 1996. View at Google Scholar · View at Scopus
  24. D. McCrory, C. Weir, I. Halliday et al., “The reliability of endotoxin and cytokine measurements in polytrauma patients and their relationship to the development of sepsis,” Intensive Care Medicine, vol. 20, no. 6, article 461, 1994. View at Google Scholar · View at Scopus
  25. D. J. Adam, A. J. Lee, C. V. Ruckley, A. W. Bradbury, and J. A. Ross, “Elevated levels of soluble tumor necrosis factor receptors are associated with increased mortality rates in patients who undergo operation for ruptured abdominal aortic aneurysm,” Journal of Vascular Surgery, vol. 31, no. 3, pp. 514–519, 2000. View at Google Scholar · View at Scopus
  26. M. B. Welborn, H. S. A. Oldenburg, P. J. Hess et al., “The relationship between visceral ischemia, proinflammatory cytokines, and organ injury in patients undergoing thoracoabdominal aortic aneurysm repair,” Critical Care Medicine, vol. 28, no. 9, pp. 3191–3197, 2000. View at Google Scholar · View at Scopus
  27. L. J. Magnotti, J. S. Upperman, D.-Z. Xu, Q. Lu, and E. A. Deitch, “Gut-derived mesenteric lymph but not portal blood increases endothelial cell permeability and promotes lung injury after hemorrhagic shock,” Annals of Surgery, vol. 228, no. 4, pp. 518–527, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. M. C. Barry, C. Kelly, P. Burke, S. Sheehan, H. P. Redmond, and D. Bouchier-Hayes, “Immunological and physiological responses to aortic surgery: effect of reperfusion on neutrophil and monocyte activation and pulmonary function,” British Journal of Surgery, vol. 84, no. 4, pp. 513–519, 1997. View at Google Scholar · View at Scopus
  29. M. R. W. Grotz, E. A. Deitch, J. Ding, D. Xu, Q. Huang, and G. Regel, “Intestinal cytokine response after gut ischemia: role of gut barrier failure,” Annals of Surgery, vol. 229, no. 4, pp. 478–486, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Haga, T. Beppu, K. Doi et al., “Systemic inflammatory response syndrome and organ dysfunction following gastrointestinal surgery,” Critical Care Medicine, vol. 25, no. 12, pp. 1994–2000, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Syk, J. Brunkwall, K. Ivancev et al., “Postoperative fever, bowel ischaemia and cytokine response to abdominal aortic aneurysm repair—a comparison between endovascular and open surgery,” European Journal of Vascular and Endovascular Surgery, vol. 15, no. 5, pp. 398–405, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Argüelles, S. García, M. Maldonado, A. Machado, and A. Ayala, “Do the serum oxidative stress biomarkers provide a reasonable index of the general oxidative stress status?” Biochimica et Biophysica Acta, vol. 1674, no. 3, pp. 251–259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Yoshikawa, M. Yasuda, S. Ueda et al., “Vitamin E in gastric mucosal injury induced by ischemia-reperfusion,” American Journal of Clinical Nutrition, vol. 53, no. 1, supplement, pp. 210S–214S, 1991. View at Google Scholar · View at Scopus
  34. G. P. Novelli, C. Adembri, E. Gandini et al., “Vitamin E protects human skeletal muscle from damage during surgical ischemia-reperfusion,” American Journal of Surgery, vol. 173, no. 3, pp. 206–209, 1997. View at Publisher · View at Google Scholar · View at Scopus