Table of Contents
International Journal of Vehicular Technology
Volume 2013, Article ID 285927, 8 pages
http://dx.doi.org/10.1155/2013/285927
Research Article

Analysis of Temporal Relationships between Eye Gaze and Peripheral Vehicle Behavior for Detecting Driver Distraction

Graduate School of Information Science, Nagoya University, Nagoya 464-8601, Japan

Received 24 September 2012; Revised 25 June 2013; Accepted 5 August 2013

Academic Editor: Klaus Bengler

Copyright © 2013 Takatsugu Hirayama et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Regan, J. D. Lee, and K. L. Young, “Defining driver distraction,” in Driver Distraction: Theory, Effects, and Mitigation, chapter 4, pp. 42–54, CRC, 2008. View at Google Scholar
  2. T. A. Ranney, W. R. Garrott, and M. J. Goodman, NHTSA Driver Distraction Research: Past, Present, and Future, National Highway Traffic Safety Administration, 2001.
  3. Y. Dong, Z. Hu, K. Uchimura, and N. Murayama, “Driver inattention monitoring system for intelligent vehicles: a review,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 2, pp. 596–614, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Croo, M. Bandmann, G. Mackay, K. Rumar, and P. Vollenhoven, The Role of Driver Fatigue in Commercial Road Transport Crashes, 2001.
  5. Y. Liang and J. D. Lee, “Combining cognitive and visual distraction: less than the sum of its parts,” Accident Analysis and Prevention, vol. 42, no. 3, pp. 881–890, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. ISO, 15007-1:2002, “Road vehicles—measurement of driver visual behavior with respect to transport information and control systems—part 1: definitions and parameters,” 2002.
  7. ISO/TS, 15007-1:2001, “Road vehicles—measurement of driver visual behavior with respect to transport information and control systems—part 2: equipment and procedures,” 2001.
  8. E. Johansson, J. C. Engström, C. Cherri et al., Review of existing techniques and metrics for IVIS and ADAS assessment, Adaptive Integrated Driver-Vehicle Interface, 2004.
  9. L. Angell, J. Auflick, A. Austria et al., Driver Workload Metrics Project—Task 2 Final Report, U.S. Department of Transportation, National Highway Traffic Safety Administration, 2006.
  10. J. L. Harbluk and Y. I. Noy, The Impact of Cognitive Distraction on Driver Visual Behavior and Vehicle Control, Ergonomics Division, Road Safety Directorate and Motor Vehicle Regulation Directorate, Ontario, Canada, 2002.
  11. J. G. May, R. S. Kennedy, M. C. Williams, W. P. Dunlap, and J. R. Brannan, “Eye movement indices of mental workload,” Acta Psychologica, vol. 75, no. 1, pp. 75–89, 1990. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Miyaji, H. Kawanaka, and K. Oguri, “Driver's cognitive distraction detection using physiological features by the AdaBoost,” in Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems (ITSC '09), pp. 90–95, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Kircher, C. Ahlstrom, and A. Kircher, “Comparison of two eye-gaze based real-time driver distraction detection algorithms in a small-scale field operational test,” in Proceedings of the 5th International Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, pp. 16–23, 2009.
  14. R. Ishii and Y. I. Nakano, “Estimating user’s conversational engagement based on gaze behaviors,” in Intelligent Virtual Agents, Lecture Notes in Computer Science, vol. 5208, pp. 200–207, 2008. View at Google Scholar
  15. T. Hirayama, J. Dodane, H. Kawashima, and T. Matsuyama, “Estimates of user interest using timing structures between proactive content-display updates and eye movements,” IEICE Transactions on Information and Systems, vol. E93-D, no. 6, pp. 1470–1478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Yonetani, H. Kawashima, T. Hirayama, and T. Matsuyama, “Mental focus analysis using the spatio-temporal correlation between visual saliency and eye movements,” Journal of Information Processing, vol. 20, no. 1, pp. 267–276, 2012. View at Google Scholar
  17. T. Hirayama, Y. Sumi, T. Kawahara, and T. Matsuyama, “Info-concierge: proactive multi-modal interaction based on mind probing,” in The Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA/ASC '11), 2011.
  18. N. Merat and A. H. Jamson, “Multisensory signal detection: a tool for assessing driver workload during IVIS management,” in Proceedings of the 4th International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, 2007.
  19. N. Merat, E. Johansson, J. A. Engström, E. Chin, F. Nathan, and T. W. Victor, Specification of a secondary task to be used in safety assessment of IVIS, Adaptive Integrated Driver-Vehicle Interface, 2007.
  20. G. L. Rupp, Performance Metrics for Assessing Driver Distraction: The Quest for Improved Road Safety, SAE International, 2010.
  21. L. Hsieh, R. Young, and S. Seaman, “Development of the enhanced peripheral detection task: a surrogate test for driver distraction,” SAE International Journal of Passenger Cars, vol. 5, no. 1, pp. 317–325, 2012. View at Google Scholar
  22. M. F. Land and D. N. Lee, “Where we look when we steer,” Nature, vol. 369, no. 6483, pp. 742–744, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Apostoloff and A. Zelinsky, “Vision in and out of vehicles: integrated driver and road scene monitoring,” International Journal of Robotics Research, vol. 23, no. 4-5, pp. 513–538, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Fletcher and A. Zelinsky, “Driver inattention detection based on eye gaze-road event correlation,” International Journal of Robotics Research, vol. 28, no. 6, pp. 774–801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. I. Posner, “Orienting of attention,” The Quarterly journal of experimental psychology, vol. 32, no. 1, pp. 3–25, 1980. View at Google Scholar · View at Scopus
  26. K. Takeda, J. H. L. Hansen, P. Boyraz, L. Malta, C. Miyajima, and H. Abut, “International large-scale vehicle corpora for research on driver behavior on the road,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 3, pp. 1–15, 2011. View at Google Scholar
  27. S. Hara, C. Miyajima, K. Itou, and K. Takeda, “An online customizable music retrieval system with a spoken dialogue interface,” Journal of Acoustical Society of America, vol. 120, no. 5, pp. 3378–3379, 2006. View at Google Scholar
  28. Y. Li, C. Miyajima, N. Kitaoka, and K. Takeda, “Driving scene retrieval using integrated vehicle motion feature matching,” in Proceedings of the 5th Biennial Workshop on DSP for In-Vehicle Systems, pp. 1–8, 2011.
  29. J. M. Wolfe and T. S. Horowitz, “What attributes guide the deployment of visual attention and how do they do it?” Nature Reviews Neuroscience, vol. 5, no. 6, pp. 495–501, 2004. View at Google Scholar · View at Scopus
  30. L. Malta, C. Miyajima, N. Kitaoka, and K. Takeda, “Analysis of real-world driver's frustration,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 1, pp. 109–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. I. Posner and Y. Cohen, “Components of visual orienting,” in Attention and Performance, X. H. . Bouma and D. Bowhuis, Eds., pp. 531–556, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 1984. View at Google Scholar
  32. Alliance of Automobile Manufactures, Statement of Principles, Criteria and Verification Procedures on Driver Interactions with Advanced In-Vehicle Information and Communication Systems, 2006.
  33. A. Doshi and M. Trivedi, “Investigating the relationships between gaze patterns, dynamic vehicle surround analysis, and driver intentions,” in Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 887–892, June 2009. View at Publisher · View at Google Scholar · View at Scopus