Table of Contents
International Journal of Vehicular Technology
Volume 2013 (2013), Article ID 587687, 9 pages
http://dx.doi.org/10.1155/2013/587687
Research Article

A Robust Fuzzy Sliding Mode Controller Synthesis Applied on Boost DC-DC Converter Power Supply for Electric Vehicle Propulsion System

Faculty of the Sciences and Technology, Bechar University, BP 417, 08000 Bechar, Algeria

Received 12 March 2013; Revised 3 May 2013; Accepted 7 May 2013

Academic Editor: Aboelmagd Noureldin

Copyright © 2013 Boumediène Allaoua et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Moreno, J. Dixon, and M. Ortuzar, “Energy management system for an electric vehicle, using ultracapacitors and neural networks,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 614–623, 2006. View at Google Scholar
  2. M. Salman, M. Chang, and J. Chen, “Predictive energy management strategies for hybrid vehicles,” in Proceedings of the IEEE Conference Vehicle Power and Propulsion, pp. 21–25, Chicago, Ill, USA, September 2005.
  3. J. Larminie and J. Lowry, Electric Vehicle Technology Explained, John Wiley & Sons, England, UK, 2003.
  4. R. F. Nelson, “Power requirements for battery in HEVs,” Journal of Power Sources, vol. 91, pp. 2–26, 2000. View at Google Scholar
  5. M. Rashid, Power Electronics Handbook, Elsevier Press, 2007.
  6. C. Xia and Y. Guo, “Implementation of a Bi-directional DC/DC Converter in the electric vehicle,” Journal of Power Electronics, vol. 40, no. 1, pp. 70–72, 2006. View at Google Scholar
  7. X. X. Yan and D. Patterson, “Novel power management for high performance and cost reduction in an electric vehicle,” Renewable Energy, vol. 22, no. 1–3, pp. 177–183, 2001. View at Google Scholar
  8. Q. Zhang and Y. Yin, “Analysis and evaluation of bidirectional DC/DC converter,” Journal of Power Technology, vol. 1, no. 4, pp. 331–338, 2003. View at Google Scholar
  9. S. Buso, “Design of a robust voltage controller for a Buck-Boost converter using μ-synthesis,” IEEE Transactions on Control Systems Technology, vol. 7, no. 2, pp. 222–229, 1999. View at Google Scholar · View at Scopus
  10. Y. B. Shtessel, A. S. I. Zinober, and I. A. Shkolnikov, “Sliding mode control of boost and buck-boost power converters using method of stable system centre,” Automatica, vol. 39, no. 6, pp. 1061–1067, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. C. Tan, Y. M. Lai, and C. K. Tse, “An evaluation of the practicality of sliding mode controllers in DC-DC converters and their general design issues,” in Proceedings of the 37th IEEE Power Electronics Specialists Conference, pp. 187–193, 2006.
  12. S. C. Tan, Y. M. Lai, and C. K. Tse, “A unified approach to the design of PWM-based sliding-mode voltage controllers for basic DC-DC converters in continuous conduction mode,” IEEE Transactions on Circuits and Systems I, vol. 53, no. 8, pp. 1816–1827, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Song and S. M. Smith, “A comparison of sliding mode controller and fuzzy sliding mode controller,” in Proceedings of the 19th International Conference of the North American Fuzzy Information Processing Society (NAFIPS '00), pp. 480–484, 2000.
  14. S. B. Choi, C. C. Cheong, and D. W. Park, “Moving switching surfaces for robust control of second order variable structure systems,” International Journal of Control, vol. 58, no. 1, pp. 229–245, 1993. View at Google Scholar
  15. Q. P. Ha, D. C. Rye, and H. F. Durrant-Whyte, “Fuzzy moving sliding mode control with application to robotic manipulators,” Automatica, vol. 35, no. 4, pp. 607–616, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Lee, E. Kim, H. Kang, and M. Park, “Design of sliding mode controller with fuzzy sliding surfaces,” IEE Proceedings Control Theory & Applications, vol. 145, no. 5, 1998. View at Google Scholar
  17. H. Temeltas, “A fuzzy adaptation technique for sliding mode controllers,” in Proceedings of the IEEE International Symposium on Intelligent Control, pp. 15–18, Columbus, Ohio, USA, 1994.
  18. S. W. Kim and J. J. Lee, “Design of a fuzzy controller with fuzzy sliding surface,” Fuzzy Sets and Systems, vol. 71, pp. 359–367, 1995. View at Google Scholar
  19. Q. Zhao and F. C. Lee, “High efficiency, high step-up DC-DC converters,” IEEE Transactions on Power Electronics, vol. 18, pp. 65–73, 2003. View at Google Scholar
  20. H. J. Chill and L. W. Lin, “A bidirectional DC-DC converter for fuel cell electric vehicle driving system,” IEEE Transactions on Power Electronics, vol. 21, pp. 950–958, 2006. View at Google Scholar
  21. M. Ehsani, K. M. Rahman, M. D. Bellar, and A. J. Severinsky, “Evaluation of soft switching for EV and HEV motor drives,” IEEE Transactions on Industrial Electronics, vol. 48, no. 1, pp. 82–90, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Nasri, A. Hazzab, I. K. Bousserhane, S. Hadjeri, and P. Sicard, “Fuzzy-sliding mode speed control for two wheels electric vehicle drive,” Journal of Electrical Engineering & Technology, vol. 4, no. 4, pp. 499–509, 2009. View at Google Scholar · View at Scopus
  23. K. D. Young, V. I. Utkin, and U. Ozguner, “A control engineer's guide to sliding mode control,” IEEE Transactions on Control Systems Technology, vol. 7, no. 3, pp. 328–342, 1999. View at Google Scholar
  24. C. Edwards and S. L. Spurgeon, Sliding Mode Control: Theory and Applications, Taylor & Francis, London, UK, 1998.
  25. C. K. Tse and K. M. Adams, “Quasi-linear analysis and control of DC-DC converters,” IEEE Transactions on Power Electronics, vol. 7, no. 2, pp. 315–323, 1992. View at Google Scholar
  26. V. M. Nguyen and C. Q. Lee, “Indirect implementations of sliding-mode control law in buck-type converters,” in Proceedings of the IEEE Applied Power Electronics Conference, vol. 1, pp. 111–115, Mars 1996.
  27. H. El Fadil and F. Giri, “Reducing chattering phenomenon in sliding mode control of Buck-Boost power converters,” in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE '08), pp. 287–292, July 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. K. Passino, Fuzzy Control, Addison-Wesley, London, UK, 2000.