Table of Contents
International Journal of Vehicular Technology
Volume 2014 (2014), Article ID 678786, 7 pages
http://dx.doi.org/10.1155/2014/678786
Research Article

Driver’s Fatigue Detection Based on Yawning Extraction

1LRIT Associated Unit to CNRST (URAC 29), Faculty of Sciences, University of Mohammed V-Agdal, 4 Avenue Ibn Battouta, B.P. 1014, Rabat, Morocco
2LGS, ENSA, Ibn Tofail University, B.P 241, Kenitra, Morocco

Received 25 May 2014; Revised 20 July 2014; Accepted 20 July 2014; Published 6 August 2014

Academic Editor: Aboelmagd Noureldin

Copyright © 2014 Nawal Alioua et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Bergasa, J. Nuevo, M. Sotelo, and M. Vazquez, “Real-time system for monitoring driver vigilance,” IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 1, pp. 63–77, 2006. View at Google Scholar
  2. N. P. Papanikolopoulos and M. Eriksson, “Driver fatigue: a vision-based approach to automatic diagnosis,” Transportation Research C: Emerging Technologies, vol. 9, no. 6, pp. 399–413, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Zhang, B. Cheng, R. Feng, and X. Zhang, “A real-time adaptive learning method for driver eye detection,” in Digital Image Computing: Techniques and Applications, pp. 300–304, 2008. View at Google Scholar
  4. R. Grace, V. Byrne, D. Bierman et al., “A drowsy driver detection system for heavy vehicles,” in Proceedings of the 17th Digital Avionics Systems Conference, vol. 2, pp. 136/1–136/8, 2001.
  5. D. Tripathi and N. Rath, “A novel approach to solve drowsy driver problem by using eye-localization technique using CHT,” International Journal of Recent Trends in Engineering, vol. 2, no. 2, pp. 139–145, 2009. View at Google Scholar
  6. T. D’Orazio, M. Leo, P. Spagnolo, and C. Guaragnella, “A neural system for eye detection in a driver vigilance application,” in Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems (ITSC ’04), pp. 320–325, October 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Smith, M. Shah, and N. da Vitoria Lobo, “Monitoring head/eye motion for driver alertness with one camera,” in Proceedings of the 15th International Conference on Pattern Recognition (ICPR ’00), vol. 4, pp. 636–642, Barcelona, Spain, 2000. View at Publisher · View at Google Scholar
  8. T. Wang and P. Shi, “Yawning detection for determining driver drowsiness,” in Proceedings of the IEEE International Workshop on VLSI Design and Video Technology, pp. 373–376, Suzhou, China, May 2005.
  9. M. Mohanty, A. Mishra, and A. Routray, “A non-rigid motion estimation algorithm for yawn detection in human drivers,” International Journal of Computational Vision and Robotics, vol. 1, no. 1, pp. 89–109, 2009. View at Google Scholar
  10. M. Saradadevi and P. Bajaj, “Driver fatigue detection using Mouth and Yawning analysis,” International Journal of Computer Science and Network Security, vol. 8, no. 6, 2008. View at Google Scholar
  11. A. L. Yuille, P. W. Hallinan, and D. S. Cohen, “Feature extraction from faces using deformable templates,” International Journal of Computer Vision, vol. 8, no. 2, pp. 99–111, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988. View at Publisher · View at Google Scholar · View at Scopus
  13. T. F. Coates, G. J. Edwards, and C. J. Taylor, “Active appearance model,” in European Conference on Computer Vision, pp. 484–498, 1998.
  14. Z. Zhu, K. Fujimura, and Q. Ji, “Real-time eye detection and tracking under various light conditions,” in Proceedings of ETRA: Eye Tracking Research & Applications Symposium, pp. 139–144, ACM Press, New York, NY, USA, 2002. View at Google Scholar
  15. A. Haro, M. Flickner, and I. Essa, “Detecting and tracking eyes by using their physiological properties, dynamics, and appearance,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’00), vol. 1, pp. 163–168, Hilton Head Island, SC , USA, June 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Zhang, H. Chen, P. Yao, B. Li, and Z. Zhuang, “Precise eye localization with AdaBoost and fast radial symmetry,” in Proceedings of the International Conference on Computational Intelligence and Security (ICCIAS ’06), pp. 725–730, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Rongben, G. Lie, T. Bingliang, and J. Lisheng, “Monitoring mouth movement for driver fatigue or distraction with one camera,” in Proceedings of the 7th IEEE International Conference on Intelligent Transportation Systems, pp. 314–319, October 2004. View at Scopus
  18. T. Kawaguchi, D. Hidaka, and M. Rizon, “Detection of eyes from human faces by Hough transform and separability filter,” in Proceedings of the International Conference on Image Processing (ICIP ’00), pp. 49–52, Vancouver, Canada, September 2000. View at Scopus
  19. Z. Zhou and X. Geng, “Projection functions for eye detection,” Pattern Recognition, vol. 37, no. 5, pp. 1049–1056, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  20. F. Timm and E. Barth, “Accurate eye centre localisation by means of gradients,” in Proceedings of the International Conference on Computer Vision Theory and Application (VISAPP ’11), pp. 125–130, INSTICC, Algarve, Portugal, March 2011. View at Scopus
  21. X. Fan, B.-C. Yin, and Y.-F. Sun, “Yawning detection for monitoring driver fatigue,” in Proceedings of the 6th International Conference on Machine Learning and Cybernetics (ICMLC ’07), vol. 2, pp. 664–668, Hong Kong, China, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Romdhani, P. Torr, B. Schölkopf, and A. Blake, “Computationally efficient face detection,” in Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 695–700, July 2001. View at Scopus
  24. M. Franz, W. Kienzle, G. Bakir, and B. Scholkopf, “Face detection-efficient and rank deficient,” Advances in Neural Information Processing Systems, vol. 17, pp. 673–680, 2005. View at Google Scholar
  25. R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Communications of the ACM, vol. 15, no. 1, pp. 11–15, 1972. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Hrishikesh, S. Mahajan, A. Bhagwat et al., “Design of drodeasys (drowsy detection and alarming system),” Advances in Computational Algorithms and Data Analysis, pp. 75–79, 2009. View at Google Scholar