Table of Contents Author Guidelines Submit a Manuscript
International Journal of Zoology
Volume 2011, Article ID 328749, 9 pages
http://dx.doi.org/10.1155/2011/328749
Research Article

Watercress and Water Quality: The Effect of Phenethyl Isothiocyanate on the Mating Behaviour of Gammarus pulex

Centre for Environmental Sciences, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK

Received 23 December 2010; Accepted 8 March 2011

Academic Editor: Michelle Bloor

Copyright © 2011 Melanie J. Dixon and Peter J. Shaw. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Environment Agency, The State of England's Chalk Rivers, UK Biodiversity Action Plan Steering Group for Chalk Rivers Environment Agency, Bristol, UK, 2004.
  2. Hampshire Biodiversity Partnership, Biodiversity Action Plan for Hampshire, vol. 2, Hampshire County Council, 2000.
  3. G. Woodward, G. Papantoniou, F. Edwards, and R. B. Lauridsen, “Trophic trickles and cascades in a complex food web: impacts of a keystone predator on stream community structure and ecosystem processes,” Oikos, vol. 117, no. 5, pp. 683–692, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. D. Berrie, “The chalk-stream environment,” Hydrobiologia, vol. 248, no. 1, pp. 3–9, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. C. P. Mainstone, Chalk Rivers Nature Conservation and Management, WRc, 1999.
  6. A. M. Bones and J. T. Rossiter, “The myrosinase-glucosinolate system, its organisation and biochemistry,” Physiologia Plantarum, vol. 97, no. 1, pp. 194–208, 1996. View at Google Scholar
  7. J. W. Fahey, A. T. Zalcmann, and P. Talalay, “The chemical diversity and distribution of glucosinolates and isothiocyanates among plants,” Phytochemistry, vol. 56, no. 1, pp. 5–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. R. M. Newman, Z. Hanscom, and W. C. Kerfoot, “The watercress glucosinolate-myrosinase system: a feeding deterrent to caddisflies, snails and amphipods,” Oecologia, vol. 92, no. 1, pp. 1–7, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. W. C. Kerfoot, R. M. Newman, and Z. Hanscom, “Snail reaction to watercress leaf tissues: reinterpretation of a mutualistic “alarm” hypothesis,” Freshwater Biology, vol. 40, no. 2, pp. 201–213, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. A. C. Prusak, J. O'Neal, and J. Kubanek, “Prevalence of chemical defenses among freshwater plants,” Journal of Chemical Ecology, vol. 31, no. 5, pp. 1145–1160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. L. Shelton, “Within-plant variation in glucosinolate concentrations of Raphanus sativus across multiple scales,” Journal of Chemical Ecology, vol. 31, no. 8, pp. 1711–1732, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Brown and M. J. Morra, Glucosinolate-Containing Seed Meal as a Soil Amendment to Control Plant Pests: 2000–2002, National Renewable Energy Laboratory, 2005.
  13. R. M. Newman, W. C. Kerfoot, and Z. Hanscom, “Watercress allelochemical defends high-nitrogen foliage against consumption: effects on freshwater invertebrate herbivores,” Ecology, vol. 77, no. 8, pp. 2312–2323, 1996. View at Google Scholar · View at Scopus
  14. R. M. Newman, W. C. Kerfoot, and Z. Hanscom, “Watercress and amphipods: Potential chemical defense in a spring stream macrophyte,” Journal of Chemical Ecology, vol. 16, no. 1, pp. 245–259, 1990. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Medgett, The Impact of St Mary Bourne Cress Farm on the Bourne Rivulet, Ecological Appraisal Team, Hampshire and Isle of Wight Area Environment Agency, 1998.
  16. H. B. N. Hynes, “The reproductive cycle of some British freshwater Gammaridae,” The Journal of Animal Ecology, vol. 24, no. 2, pp. 352–387, 1955. View at Google Scholar
  17. C. P. McCahon and D. Pascoe, “Use of Gammarus pulex (L.) in safety evaluation tests: culture and selection of a sensitive life stage,” Ecotoxicology and Environmental Safety, vol. 15, no. 3, pp. 245–252, 1988. View at Google Scholar · View at Scopus
  18. J. Prenter, C. MacNeil, J. T. A. Dick, G. E. Riddell, and A. M. Dunn, “Lethal and sublethal toxicity of ammonia to native, invasive, and parasitised freshwater amphipods,” Water Research, vol. 38, no. 12, pp. 2847–2850, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. E. Girling, D. Pascoe, C. R. Janssen et al., “Development of methods for evaluating toxicity to freshwater ecosystems,” Ecotoxicology and Environmental Safety, vol. 45, no. 2, pp. 148–176, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. M. M. Watts, D. Pascoe, and K. Carroll, “Survival and precopulatory behaviour of Gammarus pulex (L.) exposed to two xenoestrogens,” Water Research, vol. 35, no. 10, pp. 2347–2352, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Engelen-Eigles, G. Holden, J. D. Cohen, and G. Gardner, “The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.),” Journal of Agricultural and Food Chemistry, vol. 54, no. 2, pp. 328–334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. U. Palaniswamy, R. McAvoy, and B. Bible, “Supplemental light before harvest increases phenethyl isothiocyanate in watercress under 8-hour photoperiod,” HortScience, vol. 32, no. 2, pp. 117–205, 1997. View at Google Scholar
  23. Sigma-Aldrich, “Safety Data Sheet: phenethyl isothiocyanate 253731 (Version 3.0, Revision Date 28/8/09),” in According to Regulation (EC) 1907/2006, 2009. View at Google Scholar
  24. A. Cold and V. E. Forbes, “Consequences of a short pulse of pesticide exposure for survival and reproduction of Gammarus pulex,” Aquatic Toxicology, vol. 67, no. 3, pp. 287–299, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J. F. C. Malbouisson, T. W. K. Young, and A. W. Bark, “Disruption of precopula in Gammarus pulex as a result of brief exposure to gamma-hexachlorocyclohexane (Lindane),” Chemosphere, vol. 28, no. 11, pp. 2011–2020, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. E. W. Sexton, “On the rearing and breeding of Gammarus in laboratory conditions,” Journal of the Marine Biological Association of the United Kingdom, vol. 15, no. 1, pp. 33–56, 1928. View at Google Scholar
  27. International Organisation for Standardisation, General requirements for the competence of testing and calibration laboratories, 2nd edition, 2005.
  28. D. Pascoe, T. J. Kedwards, S. J. Maund, E. Muthi, and E. J. Taylor, “Laboratory and field evaluation of a behavioural bioassay: the Gammarus pulex (L.) precopula separation (GaPPS) test,” Water Research, vol. 28, no. 2, pp. 369–372, 1994. View at Publisher · View at Google Scholar · View at Scopus
  29. Vitacress Salads Ltd, Estimate of Watercress: Wash Water Ratio, Lower Link Farm, E. Hiscocks, 2008.
  30. Vitacress Salads Ltd, Crop Wash Statistics May-June 2007 & June-July 2008, M. Fisher, 2008.
  31. Tidepool Scientific Software, ToxCalc: Environmental Toxicity Data Analysis System Version 5.0.32, McInleyville, Calif, USA, 1994.
  32. M. J. Dixon, The sustainable use of water to mitigate the impacts of watercress farms on chalk streams in Southern England, Ph.D. thesis, Department of Civil Engineering and the Environment, University of Southampton, 2010.
  33. L. Maltby, S. A. Clayton, R. M. Wood, and N. McLoughlin, “Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: robustness, responsiveness, and relevance,” Environmental Toxicology and Chemistry, vol. 21, no. 2, pp. 361–368, 2002. View at Google Scholar · View at Scopus
  34. E. J. Taylor, D. P. Jones, S. J. Maund, and D. Pascoe, “A new method for measuring the feeding activity of Gammarus pulex (L),” Chemosphere, vol. 26, no. 7, pp. 1375–1381, 1993. View at Publisher · View at Google Scholar · View at Scopus
  35. J. S. Welton and R. T. Clarke, “Laboratory studies on the reproduction and growth of the amphipod, Gammarus pulex (L.),” Animal Ecology, vol. 49, pp. 581–592, 1980. View at Google Scholar
  36. USEPA, “Gammarid acute toxicity test (OTS-795-120),” in EPA Test Methods, 1996. View at Google Scholar
  37. I. Johnson, M. Hutchings, R. Benstead, J. Thain, and P. Whitehouse, “Bioassay selection, experimental design and quality control/assurance for use in effluent assessment and control,” Ecotoxicology, vol. 13, no. 5, pp. 437–447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Ji, Y. Kuo, and M. E. Morris, “Pharmacokinetics of dietary phenethyl isothiocyanate in rats,” Pharmaceutical Research, vol. 22, no. 10, pp. 1658–1666, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Gil and A. J. MacLeod, “Degradation of glucosinolates of Nasturtium officinale seeds,” Phytochemistry, vol. 19, no. 8, pp. 1657–1660, 1980. View at Google Scholar · View at Scopus
  40. V. M. Koritsas, J. A. Lewis, and G. R. Fenwick, “Glucosinolate responses of oilseed rape, mustard and kale to mechanical wounding and infestation by cabbage stem flea beetle (Psylliodes chrysocephala),” Annals of Applied Biology, vol. 118, no. 1, pp. 209–221, 1991. View at Google Scholar
  41. P. W. Lambdon and M. Hassall, “Do plant toxins impose constraints on herbivores? An investigation using compartmental analysis,” Oikos, vol. 93, no. 1, pp. 168–176, 2001. View at Google Scholar · View at Scopus
  42. P. Roessingh, E. Städler, G. R. Fenwick et al., “Oviposition and tarsal chemoreceptors of the cabbage root fly are stimulated by glucosinolates and host plant extracts,” Entomologia Experimentalis et Applicata, vol. 65, no. 3, pp. 267–282, 1992. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Rowell and D. W. Blinn, “Herbivory on a chemically defended plant as a predation deterrent in Hyalella azteca,” Freshwater Biology, vol. 48, no. 2, pp. 247–254, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. A. D. P. Worgan and R. Tyrell, “Monitoring behavioural responses of Gammarus pulex to watercress oils,” Centre for Ecology and Hydrology, Unpublished Report to Vitacress Salads Ltd CEH Project no. 602786NEW, 2005.
  45. Y. Zhang, “Molecular mechanism of rapid cellular accumulation of anticarcinogenic isothiocyanates,” Carcinogenesis, vol. 22, no. 3, pp. 425–431, 2001. View at Google Scholar · View at Scopus
  46. F. L. Chung, M. A. Morse, K. I. Eklind, and J. Lewis, “Quantitation of human uptake of the anticarcinogen phenethyl isothiocyanate after a watercress meal,” Cancer Epidemiology Biomarkers and Prevention, vol. 1, no. 5, pp. 383–388, 1992. View at Google Scholar · View at Scopus
  47. J. W. Chiao, H. Wu, G. Ramaswamy et al., “Ingestion of an isothiocyanate metabolite from cruciferous vegetables inhibits growth of human prostate cancer cell xenografts by apoptosis and cell cycle arrest,” Carcinogenesis, vol. 25, no. 8, pp. 1403–1408, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. E. A. S. Rosa, “Daily variation in glucosinolate concentrations in the leaves and roots of cabbage seedlings in two constant temperature regimes,” Journal of the Science of Food and Agriculture, vol. 73, no. 3, pp. 364–368, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. Environment Agency, Methods for the examination of waters and associated materials: The Direct Toxicity Assessment of aqueous environmental samples using the juvenile Daphnia magna immobilisation test, Standing Committee of Analysts, 2007.