Table of Contents Author Guidelines Submit a Manuscript
International Journal of Zoology
Volume 2013, Article ID 174523, 9 pages
http://dx.doi.org/10.1155/2013/174523
Research Article

Toxicity Assessment of Buprofezin, Lufenuron, and Triflumuron to the Earthworm Aporrectodea caliginosa

1Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt
2Department of Mammalian Toxicology, Central Agricultural Pesticides Laboratory (CAPL), Agriculture Research Center, Ministry of Agriculture, El-Sabahia, Alexandria, Egypt

Received 9 May 2013; Revised 15 August 2013; Accepted 31 August 2013

Academic Editor: Thomas Iliffe

Copyright © 2013 Mohamed E. I. Badawy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Retnakaran, J. Granett, and T. Ennis, “Insect growth regulators,” in Comprehensive Insect Physiology, Biochemistry, and Pharmacology, G. A. Kerkut and L. I. Gilbert, Eds., pp. 529–601, Academic Press, New York, NY, USA, 1985. View at Google Scholar
  2. B. Darvas and L. A. Polgar, “Novel type insecticides: specificity and effects on non-target organisms,” in Insecticides with Novel Modes of Action, I. Ishaaya and D. Degheele, Eds., pp. 188–259, Springer, Berlin, Germany, 1998. View at Google Scholar
  3. H. M. Nasr, M. E. I. Badawy, and E. I. Rabea, “Toxicity and biochemical study of two insect growth regulators, buprofezin and pyriproxyfen, on cotton leafworm Spodoptera littoralis,” Pesticide Biochemistry and Physiology, vol. 98, no. 2, pp. 198–205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Smagghe and D. Degheele, “Action of a novel nonsteroidal ecdysteroid mimic, tebufenozide (RH-5992), on insects of different orders,” Pesticide Science, vol. 42, no. 2, pp. 85–92, 1994. View at Publisher · View at Google Scholar
  5. K. E. Lee, Earthworms: Their Ecology and Relations to Soils and Land Use, Academic Press, Sydney, Australia, 1st edition, 1985.
  6. H. Eijsackers, “Earthworms as colonizers of natural and cultivated soil environments,” Applied Soil Ecology, vol. 50, no. 1, pp. 1–13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. H. Wang, L.-S. Zhu, W. Liu, J. Wang, and H. Xie, “Biochemical responses of earthworm (Eisenia foetida) to the pesticides chlorpyrifos and fenvalerate,” Toxicology Mechanisms and Methods, vol. 22, no. 3, pp. 236–241, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. R. W. Parmelee, M. H. Beare, W. Cheng et al., “Earthworms and enchytraeids in conventional and no-tillage agroecosystems: a biocide approach to assess their role in organic matter breakdown,” Biology and Fertility of Soils, vol. 10, no. 1, pp. 1–10, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. J. E. Morgan and A. J. Morgan, “The accumulation of metals (Cd, Cu, Pb, Zn and Ca) by two ecologically contrasting earthworm species (Lumbricus rubellus and Aporrectodea caliginosa): implications for ecotoxicological testing,” Applied Soil Ecology, vol. 13, no. 1, pp. 9–20, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Halliwell and J. M. C. Gutteridge, “Role of free radicals and catalytic metal ions in human disease: an overview,” Methods in Enzymology, vol. 186, pp. 1–85, 1990. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Loureiro, A. M. V. M. Soares, and A. J. A. Nogueira, “Terrestrial avoidance behaviour tests as screening tool to assess soil contamination,” Environmental Pollution, vol. 138, no. 1, pp. 121–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Mostert, A. S. Schoeman, and M. Merwe, “The relative toxicities of insecticides to earthworms of the Pheretima group (Oligochaeta),” Pest Management Science, vol. 58, no. 5, pp. 446–450, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Ribera, J. F. Narbonne, C. Arnaud, and M. Saint-Denis, “Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil, effects of carbaryl,” Soil Biology and Biochemistry, vol. 33, no. 7-8, pp. 1123–1130, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Shi, Y. Shi, X. Wang, Y. Lu, and S. Yan, “Comparative effects of lindane and deltamethrin on mortality, growth, and cellulase activity in earthworms (Eisenia fetida),” Pesticide Biochemistry and Physiology, vol. 89, no. 1, pp. 31–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Wang, T. Cang, X. Zhao et al., “Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida,” Ecotoxicology and Environmental Safety, vol. 79, pp. 122–128, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. L. H. Booth, S. Hodge, and K. O'Halloran, “Use of biomarkers in earthworms to detect use and abuse of field applications of a model organophosphate pesticide,” Bulletin of Environmental Contamination and Toxicology, vol. 67, no. 5, pp. 633–640, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. S. K. Gupta and V. Sundararaman, “Correlation between burrowing capability and AChE activity in the earthworm, Pheretima posthuma, on exposure to carbaryl,” Bulletin of Environmental Contamination and Toxicology, vol. 46, no. 6, pp. 859–865, 1991. View at Google Scholar · View at Scopus
  18. K. O'Halloran, L. H. Booth, S. Hodge, S. Thomsen, and S. D. Wratten, “Biomarker responses of the earthworm Aporrectodea caliginosa to organophosphates: hierarchical tests,” Pedobiologia, vol. 43, no. 6, pp. 646–651, 1999. View at Google Scholar · View at Scopus
  19. L. H. Booth and K. O'Halloran, “A comparison of biomarker responses in the earthworm Aporrectodea caliginosa to the organophosphorus insecticides Diazinon and Chlorpyrifos,” Environmental Toxicology and Chemistry, vol. 20, no. 11, pp. 2494–2502, 2001. View at Google Scholar · View at Scopus
  20. L. H. Booth, V. Heppelthwaite, and C. T. Eason, “Cholinesterase and glutathione S-transferase in the earthworm Aporrectodea caliginosa as biomarkers of organophosphate exposure,” in Proceedings of the 51st NZ Plant Protection Conference, pp. 138–142, 1998.
  21. L. H. Booth, S. Hodge, and K. O'Halloran, “Use of cholinesterase in Aporrectodea caliginosa (Oligochaeta; Lumbricidae) to detect organophosphate contamination: comparison of laboratory tests, mesocosms, and field studies,” Environmental Toxicology and Chemistry, vol. 19, no. 2, pp. 417–422, 2000. View at Google Scholar · View at Scopus
  22. A. Calisi, M. G. Lionetto, and T. Schettino, “Biomarker response in the earthworm Lumbricus terrestris exposed to chemical pollutants,” Science of the Total Environment, vol. 409, no. 20, pp. 4456–4464, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. S.-J. Wu, H. Zhang, Y. Hu, H.-L. Li, and J.-M. Chen, “Effects of 1,2,4-trichlorobenzene on the enzyme activities and ultrastructure of earthworm Eisenia fetida,” Ecotoxicology and Environmental Safety, vol. 76, no. 1, pp. 175–181, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Heimbach, “Correlation between three methods for determining the toxicity of chemicals to earthworms,” Pesticide Science, vol. 15, no. 6, pp. 605–611, 1984. View at Publisher · View at Google Scholar
  25. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin Phenol Reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  26. G. L. Ellman, K. D. Courtney, V. Andres, and R. M. Featherstone, “A new and rapid colorimetric determination of acetylcholinesterase activity,” Biochemical Pharmacology, vol. 7, no. 2, pp. 88–95, 1961. View at Google Scholar · View at Scopus
  27. M. Saint-Denis, F. Labrot, J. F. Narbonne, and D. Ribera, “Glutathione, glutathione related enzymes, and catalase activities in the earthworm Eisenia fetida andrei,” Archives of Environmental Contamination and Toxicology, vol. 35, no. 4, pp. 602–614, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. D. J. Finney, Probit Analysis, Cambridge University Press, Cambridge, UK, 3rd edition, 1971.
  29. A. J. Reinecke and J. M. Venter, “Influence of dieldrin on the reproduction of the earthworm Eisenia fetida (Oligochaeta),” Biology and Fertility of Soils, vol. 1, no. 1, pp. 39–44, 1985. View at Publisher · View at Google Scholar · View at Scopus
  30. P. J. Brown, S. M. Long, D. J. Spurgeon, C. Svendsen, and P. K. Hankard, “Toxicological and biochemical responses of the earthworm Lumbricus rubellus to pyrene, a non-carcinogenic polycyclic aromatic hydrocarbon,” Chemosphere, vol. 57, no. 11, pp. 1675–1681, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. L. A. Burrows and C. A. Edwards, “The use of integrated soil microcosms to predict effects of pesticides on soil ecosystems,” European Journal of Soil Biology, vol. 38, no. 3-4, pp. 245–249, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. E. T. Nunes and E. L. G. Espíndola, “Sensitivity of Eisenia andrei (Annelida, Oligochaeta) to a commercial formulation of abamectin in avoidance tests with artificial substrate and natural soil under tropical conditions,” Ecotoxicology, vol. 21, no. 4, pp. 1063–1071, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Ribeiro, J. P. Sousa, A. J. A. Nogueira, and A. M. V. M. Soares, “Effect of endosulfan and parathion on energy reserves and physiological parameters of the terrestrial isopod Porcellio dilatatus,” Ecotoxicology and Environmental Safety, vol. 49, no. 2, pp. 131–138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Y. Mosleh, S. M. M. Ismail, M. T. Ahmed, and Y. M. Ahmed, “Comparative toxicity and biochemical responses of certain pesticides to the mature earthworm Aporrectodea caliginosa under laboratory conditions,” Environmental Toxicology, vol. 18, no. 5, pp. 338–346, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. N. A. Martin, “The effects of herbicides used on asparagus on the growth rate of the earthworm Allolobophora caliginosa,” in Proceedings of the 35th New Zealand Weed and Pest Conference, pp. 238–330, 1982.
  36. C. Kokta, “A laboratory test on sublethal effects of pesticides on Eisenia fetida,” in Ecotoxicology of Earthworms, H. Becker, P. J. Edwards, P. W. Greig-Smith, and F. Heimbach, Eds., pp. 55–62, Intersept Press, Andover, Hants, 1992. View at Google Scholar
  37. J. J. Scott-Fordsmand and J. M. Weeks, “Review of selected biomarkers in earthworms,” in Advances in Earthworm Ecotoxicology, S. Sheppard, J. Bembridge, M. Holmstrup, and L. Posthuma, Eds., pp. 173–189, SETAC, Amsterdam, The Netherlands, 1998. View at Google Scholar
  38. J. E. Chambers, R. J. Carr, J. S. Boone, and H. W. Chambers, “The metabolism of organophosphorous insecticides,” in Handbook of Pesticide Toxicology, Agents, R. Krieger, Ed., vol. 2, pp. 919–929, Academic Press, San Diego, Calif, USA, 2001. View at Google Scholar
  39. J. Stenersen, “Action of pesticides on earthworms. Part-I: the toxicity of cholinesterase inhibiting insecticides to earthworms as evaluated by laboratory tests,” Pesticide Science, vol. 10, pp. 66–71, 1979. View at Google Scholar · View at Scopus