Table of Contents Author Guidelines Submit a Manuscript
Interdisciplinary Perspectives on Infectious Diseases
Volume 2009, Article ID 251406, 14 pages
http://dx.doi.org/10.1155/2009/251406
Review Article

Diagnosis of Infections Caused by Pathogenic Free-Living Amoebae

1Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
2Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA

Received 25 March 2009; Accepted 5 June 2009

Academic Editor: Louis M. Weiss

Copyright © 2009 Bruno da Rocha-Azevedo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Fowler and R. Carter, “Acute pyogenic meningitis probably due to Acanthamoeba sp.: a preliminary report,” The British Medical Journal, vol. 2, pp. 740–742, 1965. View at Google Scholar
  2. C. G. Butt, “Primary amebic meningoencephalitis,” The New England Journal of Medicine, vol. 274, no. 26, pp. 1473–1476, 1966. View at Google Scholar
  3. A. J. Martinez, Free-Living Amebas: Natural History, Prevevtion, Diagnosis, Pathology, and Treatment of Disease, CRC Press, Boca Raton, Fla, USA, 1985.
  4. A. J. Martinez, “Free-living amebas: infection of the central nervous system,” Mount Sinai Journal of Medicine, vol. 60, no. 4, pp. 271–278, 1993. View at Google Scholar
  5. A. J. Martinez and G. S. Visvesvara, “Free-living, amphizoic and opportunistic amebas,” Brain Pathology, vol. 7, no. 1, pp. 583–598, 1997. View at Google Scholar
  6. F. Marciano-Cabral and G. Cabral, “Acanthamoeba spp. as agents of disease in humans,” Clinical Microbiology Reviews, vol. 16, no. 2, pp. 273–307, 2003. View at Publisher · View at Google Scholar
  7. G. S. Visvesvara, H. Moura, and F. L. Schuster, “Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea,” FEMS Immunology and Medical Microbiology, vol. 50, no. 1, pp. 1–26, 2007. View at Publisher · View at Google Scholar · View at PubMed
  8. F. L. Schuster and G. S. Visvesvara, “Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals,” International Journal for Parasitology, vol. 34, no. 9, pp. 1001–1027, 2004. View at Publisher · View at Google Scholar · View at PubMed
  9. B. B. Gelman, S. J. Rauf, R. Nader et al., “Amoebic encephalitis due to Sappinia diploidea,” Journal of the American Medical Association, vol. 285, no. 19, pp. 2450–2451, 2001. View at Google Scholar
  10. B. B. Gelman, V. Popov, G. Chaljub et al., “Neuropathological and ultrastructural features of amebic encephalitis caused by Sappinia diploidea,” Journal of Neuropathology and Experimental Neurology, vol. 62, no. 10, pp. 990–998, 2003. View at Google Scholar
  11. K. Anderson and A. Jamieson, “Primary amoebic meningoencephalitis,” The Lancet, vol. 1, no. 7756, pp. 902–903, 1972. View at Google Scholar
  12. F. Marciano-Cabral, R. MacLean, A. Mensah, and L. LaPat-Polasko, “Identification of Naegleria fowleri in domestic water sources by nested PCR,” Applied and Environmental Microbiology, vol. 69, no. 10, pp. 5864–5869, 2003. View at Publisher · View at Google Scholar
  13. B. Blair, P. Sarkar, K. R. Bright, F. Marciano-Cabral, and C. P. Gerba, “Naegleria fowleri in well water,” Emerging Infectious Diseases, vol. 14, no. 9, pp. 1499–1501, 2008. View at Publisher · View at Google Scholar
  14. M. E. Shoff, A. Rogerson, K. Kessler, S. Schatz, and D. V. Seal, “Prevalence of Acanthamoeba and other naked amoebae in South Florida domestic water,” Journal of Water and Health, vol. 6, no. 1, pp. 99–104, 2008. View at Publisher · View at Google Scholar · View at PubMed
  15. T. J. Rowbotham, “Current views on the relationships between amoebae, Legionellae and man,” Israel Journal of Medical Sciences, vol. 22, no. 9, pp. 678–689, 1986. View at Google Scholar
  16. J. M. Barbaree, B. S. Fields, J. C. Feeley, G. W. Gorman, and W. T. Martin, “Isolation of protozoa from water associated with legionellosis outbreak and demonstration of intracellular multiplication of Legionella pneumophila,” Applied and Environmental Microbiology, vol. 51, no. 2, pp. 422–424, 1986. View at Google Scholar
  17. T. R. Fritsche, R. K. Gautom, S. Seyedirashti, D. L. Bergeron, and T. D. Lindquist, “Occurrence of bacterial endosymbionts in Acanthamoeba spp. isolated from corneal and environmental specimens and contact lenses,” Journal of Clinical Microbiology, vol. 31, no. 5, pp. 1122–1126, 1993. View at Google Scholar
  18. R. Michel, H. Burghardt, and H. Bergmann, “Acanthamoeba, naturally intracellularly infected with Pseudomonas aeruginosa, after their isolation from a microbiologically contaminated drinking water system in a hospital,” Zentralblatt für Hygiene und Umweltmedizin, vol. 196, no. 6, pp. 532–544, 1995. View at Google Scholar
  19. T. J. Marrie, D. Raoult, B. La Scola, R. J. Birtles, and E. de Carolis, “Legionella-like and other amoebal pathogens as agents of community-acquired pneumonia,” Emerging Infectious Diseases, vol. 7, no. 6, pp. 1026–1029, 2001. View at Google Scholar
  20. F. Marciano-Cabral, K. Han, E. Powell, T. Ferguson, and G. Cabral, “Interaction of an Acanthamoeba human isolate harboring bacteria with murine peritoneal macrophages,” Journal of Eukaryotic Microbiology, vol. 50, pp. 516–519, 2003. View at Publisher · View at Google Scholar
  21. J. Barker and M. R. W. Brown, “Trojan Horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment,” Microbiology, vol. 140, no. 6, pp. 1253–1259, 1994. View at Google Scholar
  22. F. Marciano-Cabral, “Introductory remarks: bacterial endosymbionts or pathogens of free-living amebae,” Journal of Eukaryotic Microbiology, vol. 51, no. 5, pp. 497–501, 2004. View at Google Scholar
  23. C. H. King, E. B. Shotts Jr., R. E. Wooley, and K. G. Porter, “Survival of coliforms and bacterial pathogens within protozoa during chlorination,” Applied and Environmental Microbiology, vol. 54, no. 12, pp. 3023–3033, 1988. View at Google Scholar
  24. J. D. Cirillo, S. Falkow, L. S. Tompkins, and L. E. Bermudez, “Interaction of Mycobacterium avium with environmental amoebae enhances virulence,” Infection and Immunity, vol. 65, no. 9, pp. 3759–3767, 1997. View at Google Scholar
  25. E. C. Miltner and L. E. Bermudez, “Mycobacterium avium grown in Acanthamoeba castellanii is protected from the effects of antimicrobials,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 7, pp. 1990–1994, 2000. View at Publisher · View at Google Scholar
  26. M. Molmeret, M. Horn, M. Wagner, M. Santic, and Y. Abu Kwaik, “Amoebae as training grounds for intracellular bacterial pathogens,” Applied and Environmental Microbiology, vol. 71, no. 1, pp. 20–28, 2005. View at Publisher · View at Google Scholar · View at PubMed
  27. F. Marciano-Cabral and G. Cabral, “Naegleria fowleri,” in Emerging Protozoan Pathogens, pp. 119–141, Taylor and Francis, New York, NY, USA, 2008. View at Google Scholar
  28. L. Cerva and K. Novak, “Amoebic meningoencephalitis: sixteen fatalities,” Science, vol. 160, no. 3823, p. 92, 1968. View at Google Scholar
  29. P. Ma, G. S. Visvesvara, A. J. Martinez, F. H. Theodore, P.-M. Daggett, and T. K. Sawyer, “Naegleria and Acanthamoeba infections: review,” Reviews of Infectious Diseases, vol. 12, no. 3, pp. 490–513, 1990. View at Google Scholar
  30. J. S. Seidel, P. Harmatz, G. S. Visvesvara, A. Cohen, J. Edwards, and J. Turner, “Successful treatment of primary amebic meningoencephalitis,” The New England Journal of Medicine, vol. 306, no. 6, pp. 346–348, 1982. View at Google Scholar
  31. A. Wang, R. Kay, W. S. Poon, and H. K. Ng, “Successful treatment of amoebic meningoencephalitis in a Chinese living in Hong Kong,” Clinical Neurology and Neurosurgery, vol. 95, no. 3, pp. 249–252, 1993. View at Publisher · View at Google Scholar
  32. R. L. Brown, “Successful treatment of primary amebic meningoencephalitis,” Archives of Internal Medicine, vol. 151, no. 6, pp. 1201–1202, 1991. View at Publisher · View at Google Scholar
  33. S. C. Parija and S. R. Jayakeerthee, “Naegleria fowleri: a free living amoeba of emerging medical importance,” Journal of Communicable Diseases, vol. 31, no. 3, pp. 153–159, 1999. View at Google Scholar
  34. S. N. Singh, A. K. Patwari, R. Dutta, N. Taneja, and V. K. Anand, “Naegleria meningitis,” Indian Journal of Pediatrics, vol. 35, no. 10, pp. 1012–1015, 1998. View at Google Scholar
  35. J. Vargas-Zepeda, A. V. Gomez-Alcala, J. A. Vasquez-Morales, L. Licea-Amaya, J. F. de Jonckheere, and F. Lares-Villa, “Successful treatment of Naegleria fowleri meningoencephalitis by using intravenous amphotericin B, fluconazole and rifampicin,” Archives of Medical Research, vol. 36, no. 1, pp. 83–86, 2005. View at Publisher · View at Google Scholar
  36. S. Shenoy, G. Wilson, H. V. Prashanth, K. Vidyalakshmi, B. Dhanashree, and R. Bharath, “Primary meningoencephalitis by Naegleria fowleri: first reported case from Mangalore, South India,” Journal of Clinical Microbiology, vol. 40, no. 1, pp. 309–310, 2002. View at Publisher · View at Google Scholar
  37. R. T. Cursons, J. W. Sleigh, D. Hood, and D. Pullon, “A case of primary amoebic meningoencephalitis: North Island, New Zealand,” New Zealand Medical Journal, vol. 116, no. 1187, p. U712, 2003. View at Google Scholar
  38. N. K. Shrestha, B. Khanal, S. K. Sharma, S. S. Dhakal, and R. Kanungo, “Primary amoebic meningoencephalitis in a patient with systemic lupus erythematosus,” Scandinavian Journal of Infectious Diseases, vol. 35, no. 8, pp. 514–516, 2003. View at Publisher · View at Google Scholar
  39. M. Poungvarin and P. Jariya, “The fifth nonlethal case of primary amoebic meningoencephalitis,” Journal of the Medical Association of Thailand, vol. 74, no. 2, pp. 112–115, 1991. View at Google Scholar
  40. “Primary amebic meningoencephalitis—Arizona, Florida, and Texas, 2007,” Morbidity and Mortality Weekly Report, vol. 57, no. 21, pp. 573–577, 2008.
  41. D. J. Schumacher, R. D. Tien, and K. Lane, “Neuroimaging findings in rare amebic infections of the central nervous system,” American Journal of Neuroradiology, vol. 16, pp. 930–935, 1995. View at Google Scholar
  42. D. D. Kidney and S. H. Kim, “CNS infections with free-living amebas: neuroimaging findings,” American Journal of Roentgenology, vol. 171, no. 3, pp. 809–812, 1998. View at Google Scholar
  43. P. Singh, R. Kochhar, R. K. Vashishta et al., “Amebic meningoencephalitis: spectrum of imaging findings,” American Journal of Neuroradiology, vol. 27, no. 6, pp. 1217–1221, 2006. View at Google Scholar
  44. A. J. Martinez, J. G. dos Santos, E. C. Nelson, W. P. Stamm, and E. Willaert, “Primary amebic meningoencephalitis,” in Pathology Annual, S. C. Sommers and P. P. Rosen, Eds., vol. 12, p. 225, Appleton-Century-Crofts, New York, NY, USA, 1977. View at Google Scholar
  45. A. J. Martinez and G. S. Visvesvara, “Laboratory diagnosis of pathogenic free-living amoebas: Naegleria, Acanthamoeba, and Leptomyxid,” Clinics in Laboratory Medicine, vol. 11, no. 4, pp. 861–872, 1991. View at Google Scholar
  46. O. Sparagano, E. Drouet, R. Brebant, E. Manet, G.-A. Denoyel, and P. Pernin, “Use of monoclonal antibodies to distinguish pathogenic Naegleria fowleri (cysts, trophozoites, or flagellate forms) from other Naegleria species,” Journal of Clinical Microbiology, vol. 31, no. 10, pp. 2758–2763, 1993. View at Google Scholar
  47. F. L. Reveiller, M.-P. Varenne, C. Pougnard et al., “An enzyme-linked immunosorbent assay (ELISA) for the identification of Naegleria fowleri in environmental water samples,” Journal of Eukaryotic Microbiology, vol. 50, no. 2, pp. 109–113, 2003. View at Publisher · View at Google Scholar
  48. F. L. Schuster, “Cultivation of pathogenic and opportunistic free-living amebas,” Clinical Microbiology Reviews, vol. 15, no. 3, pp. 342–354, 2002. View at Publisher · View at Google Scholar
  49. F. Marciano-Cabral, M. L. Cline, and S. G. Bradley, “Specificity of antibodies from human sera for Naegleria species,” Journal of Clinical Microbiology, vol. 25, no. 4, pp. 692–697, 1987. View at Google Scholar
  50. F. Marciano-Cabral and G. A. Cabral, “The immune response to Naegleria fowleri amebae and pathogenesis of infection,” FEMS Immunology and Medical Microbiology, vol. 51, no. 2, pp. 243–259, 2007. View at Publisher · View at Google Scholar · View at PubMed
  51. M. Pelandakis, S. Serre, and P. Pernin, “Analysis of the 5.8S rRNA gene and the internal transcribed spacers in Naegleria spp. and in N. fowleri,” Journal of Eukaryotic Microbiology, vol. 47, no. 2, pp. 116–121, 2000. View at Google Scholar
  52. M. Pelandakis and P. Pernin, “Use of multiplex PCR and PCR restriction enzyme analysis for detection and exploration of the variability in the free-living amoeba Naegleria in the environment,” Applied and Environmental Microbiology, vol. 68, no. 4, pp. 2061–2065, 2002. View at Publisher · View at Google Scholar
  53. F. L. Reveiller, P.-A. Cabanes, and F. Marciano-Cabral, “Development of a nested PCR assay to detect the pathogenic free-living amoeba Naegleria fowleri,” Parasitology Research, vol. 88, no. 5, pp. 443–450, 2002. View at Publisher · View at Google Scholar
  54. B. S. Robinson, P. T. Monis, and P. J. Dobson, “Rapid, sensitive, and discriminating identification of Naegleria spp. by real-time PCR and melting-curve analysis,” Applied and Environmental Microbiology, vol. 72, no. 9, pp. 5857–5863, 2006. View at Publisher · View at Google Scholar · View at PubMed
  55. J. Behets, P. Declerck, Y. Delaedt, L. Verelst, and F. Ollevier, “A duplex real-time PCR assay for the quantitative detection of Naegleria fowleri in water samples,” Water Research, vol. 41, no. 1, pp. 118–126, 2007. View at Publisher · View at Google Scholar · View at PubMed
  56. M. Schild, C. Gianinazzi, B. Gottstein, and N. Muller, “PCR-based diagnosis of Naegleria sp. infection in formalin-fixed and paraffin-embedded brain sections,” Journal of Clinical Microbiology, vol. 45, no. 2, pp. 564–567, 2007. View at Publisher · View at Google Scholar · View at PubMed
  57. Y. Qvarnstrom, G. S. Visvesvara, R. Sriram, and A. J. da Silva, “Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri,” Journal of Clinical Microbiology, vol. 44, no. 10, pp. 3589–3595, 2006. View at Publisher · View at Google Scholar · View at PubMed
  58. N. A. Khan, “Acanthamoeba: biology and increasing importance in human health,” FEMS Microbiology Reviews, vol. 30, no. 4, pp. 564–595, 2006. View at Publisher · View at Google Scholar · View at PubMed
  59. F. Marciano-Cabral, R. Puffenbarger, and G. A. Cabral, “The increasing importance of Acanthamoeba infections,” Journal of Eukaryotic Microbiology, vol. 47, no. 1, pp. 29–36, 2000. View at Google Scholar
  60. S. J. Hunt, S. L. Reed, W. C. Mathews, and B. Torian, “Cutaneous Acanthamoeba infection in the acquired immunodeficiency syndrome: response to multidrug therapy,” Cutis, vol. 56, no. 5, pp. 285–287, 1995. View at Google Scholar
  61. G. J. Murakawa, T. McCalmont, J. Altman et al., “Disseminated acanthamebiasis in patients with AIDS: a report of five cases and a review of the literature,” Archives of Dermatology, vol. 131, no. 11, pp. 1291–1296, 1995. View at Google Scholar
  62. S. Levine, A. E. Goldstein, M. Dahdouh, P. Blank, C. Hoffman, and C. A. Gropper, “Cutaneous Acanthamoeba in a patient with AIDS: a case study with a review of new therapy; quiz 386,” Cutis, vol. 67, no. 5, pp. 377–380, 2001. View at Google Scholar
  63. L. P. May, G. S. Sidhu, and M. R. Buchness, “Diagnosis of Acanthamoeba infection by cutaneous manifestations in a man seropositive to HIV,” Journal of the American Academy of Dermatology, vol. 26, no. 2, pp. 352–355, 1992. View at Google Scholar
  64. J. Helton, M. Loveless, and C. R. White Jr., “Cutaneous Acanthamoeba infection associated with leukocytoclastic vasculitis in an AIDS patient,” American Journal of Dermatopathology, vol. 15, no. 2, pp. 146–149, 1993. View at Google Scholar
  65. P. H. Chandrasekar, P. S. Nandi, M. R. Fairfax, and L. R. Crane, “Cutaneous infections due to Acanthamoeba in patients with acquired immunodeficiency syndrome,” Archives of Internal Medicine, vol. 157, no. 5, pp. 569–572, 1997. View at Google Scholar
  66. M. S. Torno Jr., R. Babapour, A. Gurevitch, and M. D. Witt, “Cutaneous acanthamoebiasis in AIDS,” Journal of the American Academy of Dermatology, vol. 42, no. 2, pp. 351–354, 2000. View at Google Scholar
  67. A. G. Duarte, F. Sattar, B. Granwehr, J. F. Aronson, Z. Wang, and S. Lick, “Disseminated acanthamoebiasis after lung transplantation,” Journal of Heart and Lung Transplantation, vol. 25, no. 2, pp. 237–240, 2006. View at Publisher · View at Google Scholar · View at PubMed
  68. A. J. Martinez, C. A. García, M. Halks-Miller, and R. Arce-Vela, “Granulomatous amebic encephalitis presenting as a cerebral mass lesion,” Acta Neuropathologica, vol. 51, no. 2, pp. 85–91, 1980. View at Google Scholar
  69. D. O. Matson, E. Rouah, R. T. Lee, D. Armstrong, J. T. Parke, and C. J. Baker, “Acanthameba meningoencephalitis masquerading as neurocysticercosis,” Pediatric Infectious Disease Journal, vol. 7, no. 2, pp. 121–124, 1988. View at Google Scholar
  70. J. P. Sison, C. A. Kemper, M. Loveless, D. McShane, G. S. Visvesvara, and S. C. Deresinski, “Disseminated Acanthamoeba infection in patients with AIDS: case reports and review,” Clinical Infectious Diseases, vol. 20, no. 5, pp. 1207–1216, 1995. View at Google Scholar
  71. S. K. Ofori-Kwakye, D. G. Sidebottom, J. Herbert, E. G. Fischer, and G. S. Visvesvara, “Granulomatous brain tumor caused by Acanthamoeba,” Journal of Neurosurgery, vol. 64, no. 3, pp. 505–509, 1986. View at Google Scholar
  72. J. J. Sell, F. W. Rupp, and W. W. Orrison Jr., “Granulomatous amebic encephalitis caused by Acanthamoeba,” Neuroradiology, vol. 39, no. 6, pp. 434–436, 1997. View at Publisher · View at Google Scholar
  73. H. A. R. Gardner, A. J. Martinez, G. S. Visvesvara, and A. Sotrel, “Granulomatous amebic encephalitis in an AIDS patient,” Neurology, vol. 41, no. 12, pp. 1993–1995, 1991. View at Google Scholar
  74. C. G. Culbertson and K. Harper, “Pathogenic free-living amebae. Immunocytologic demonstration and species identification,” American Journal of Tropical Medicine and Hygiene, vol. 33, no. 5, pp. 851–856, 1984. View at Google Scholar
  75. B. Tan, C. M. Weldon-Linne, D. P. Rhone, C. L. Penning, and G. S. Visvesvara, “Acanthamoeba infection presenting as skin lesions in patients with the acquired immunodeficiency syndrome,” Archives of Pathology and Laboratory Medicine, vol. 117, no. 10, pp. 1043–1046, 1993. View at Google Scholar
  76. M. S. Martinez, G. Gonzalez-Mediero, P. Santiago et al., “Granulomatous amebic encephalitis in a patient with AIDS: isolation of Acanthamoeba sp. group II from brain tissue and successful treatment with sulfadiazine and fluconazole,” Journal of Clinical Microbiology, vol. 38, no. 10, pp. 3892–3895, 2000. View at Google Scholar
  77. R. Cursons, “A simple staining method for the detection of amoebae,” New Zealand Medical Journal, vol. 94, no. 698, p. 471, 1981. View at Google Scholar
  78. T.-W. Hahn, T. P. O'Brien, W.-J. Sah, and J.-H. Kim, “Acridine orange staining for rapid diagnosis of Acanthamoeba keratitis,” Japanese Journal of Ophthalmology, vol. 42, no. 2, pp. 108–114, 1998. View at Publisher · View at Google Scholar
  79. C. W. B. Walker, “Acanthamoeba: ecology, pathogenicity and laboratory detection,” British Journal of Biomedical Science, vol. 53, no. 2, pp. 146–151, 1996. View at Google Scholar
  80. F. Petry, M. Torzewski, J. Bohl et al., “Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid,” Journal of Clinical Microbiology, vol. 44, no. 5, pp. 1903–1904, 2006. View at Publisher · View at Google Scholar · View at PubMed
  81. J. P. Steinberg, R. L. Galindo, E. S. Kraus, and K. G. Ghanem, “Disseminated acanthamebiasis in a renal transplant recipient with osteomyelitis and cutaneous lesions: case report and literature review,” Clinical Infectious Diseases, vol. 35, no. 5, pp. e43–e49, 2002. View at Google Scholar
  82. E. Willaert, A. R. Stevens, and G. R. Healy, “Retrospective identification of Acanthamoeba culbertsoni in a case of amoebic meningoencephalitis,” Journal of Clinical Pathology, vol. 31, no. 8, pp. 717–720, 1978. View at Google Scholar
  83. M. S. McKellar, L. R. Mehta, J. E. Greenlee et al., “Fatal granulomatous Acanthamoeba encephalitis mimicking a stroke, diagnosed by correlation of results of sequential magnetic resonance imaging, biopsy, in vitro culture, immunofluorescence analysis, and molecular analysis,” Journal of Clinical Microbiology, vol. 44, no. 11, pp. 4265–4269, 2006. View at Publisher · View at Google Scholar · View at PubMed
  84. J. Guarner, J. Bartlett, W.-J. Shieh, C. D. Paddock, G. S. Visvesvara, and S. R. Zaki, “Histopathologic spectrum and immunohistochemical diagnosis of amebic meningoencephalitis,” Modern Pathology, vol. 20, no. 12, pp. 1230–1237, 2007. View at Publisher · View at Google Scholar · View at PubMed
  85. J. M. Feingold, J. Abraham, S. Bilgrami et al., “Acanthamoeba meningoencephalitis following autologous peripheral stem cell transplantation,” Bone Marrow Transplantation, vol. 22, no. 3, pp. 297–300, 1998. View at Google Scholar
  86. K. C. Bloch and F. L. Schuster, “Inability to make a premortem diagnosis of Acanthamoeba species infection in a patient with fatal granulomatous amebic encephalitis,” Journal of Clinical Microbiology, vol. 43, no. 6, pp. 3003–3006, 2005. View at Publisher · View at Google Scholar · View at PubMed
  87. C. G. Shirwadkar, R. Samant, M. Sankhe et al., “Acanthamoeba encephalitis in patient with systemic lupus, India,” Emerging Infectious Diseases, vol. 12, no. 6, pp. 984–986, 2006. View at Google Scholar
  88. M. L. Turner, E. J. Cockerell, H. M. Brereton et al., “Antigens of selected Acanthamoeba species detected with monoclonal antibodies,” International Journal for Parasitology, vol. 35, no. 9, pp. 981–990, 2005. View at Publisher · View at Google Scholar · View at PubMed
  89. C. A. Wiley, R. E. Safrin, C. E. Davis et al., “Acanthamoeba meningoencephalitis in a patient with AIDS,” Journal of Infectious Diseases, vol. 155, no. 1, pp. 130–133, 1987. View at Google Scholar
  90. S. E. Vernon, B. C. Acar, S. M. Pham, and D. Fertel, “Acanthamoeba infection in lung transplantation: report of a case and review of the literature,” Transplant Infectious Disease, vol. 7, no. 3-4, pp. 154–157, 2005. View at Publisher · View at Google Scholar · View at PubMed
  91. G. S. Visvesvara, D. B. Jones, and N. M. Robinson, “Isolation, identification, and biological characterization of Acanthamoeba polyphaga from a human eye,” American Journal of Tropical Medicine and Hygiene, vol. 24, no. 5, pp. 784–790, 1975. View at Google Scholar
  92. L. Cerva, “Acanthamoeba culbertsoni and Naegleria fowleri: occurrence of antibodies in man,” Journal of Hygiene Epidemiology Microbiology and Immunology, vol. 33, no. 1, pp. 99–103, 1989. View at Google Scholar
  93. R. T. M. Cursons, T. J. Brown, E. A. Keys, K. M. Moriarty, and D. Till, “Immunity to pathogenic free-living amoebae: role of humoral antibody,” Infection and Immunity, vol. 29, no. 2, pp. 401–407, 1980. View at Google Scholar
  94. C. A. Slater, J. Z. Sickel, G. S. Visvesvara, R. C. Pabico, and A. A. Gaspari, “Brief report: successful treatment of disseminated Acanthamoeba infection in an immunocompromised patient,” The New England Journal of Medicine, vol. 331, no. 2, pp. 85–87, 1994. View at Publisher · View at Google Scholar
  95. N. Brindley, A. Matin, and N. A. Khan, “Acanthamoeba castellanii: high antibody prevalence in racially and ethnically diverse populations,” Experimental Parasitology, vol. 121, no. 3, pp. 254–256, 2009. View at Publisher · View at Google Scholar · View at PubMed
  96. F. L. Schuster, S. Honarmand, G. S. Visvesvara, and C. A. Glaser, “Detection of antibodies against free-living amoebae Balamuthia mandrillaris and Acanthamoeba species in a population of patients with encephalitis,” Clinical Infectious Diseases, vol. 42, no. 9, pp. 1260–1265, 2006. View at Publisher · View at Google Scholar · View at PubMed
  97. E. L. Powell, A. L. Newsome, S. D. Allen, and G. B. Knudson, “Identification of antigens of pathogenic free-living amoebae by protein immunoblotting with rabbit immune and human sera,” Clinical and Diagnostic Laboratory Immunology, vol. 1, no. 5, pp. 493–499, 1994. View at Google Scholar
  98. C. L. Chappell, J. A. Wright, M. Coletta, and A. L. Newsome, “Standardized method of measuring Acanthamoeba antibodies in sera from healthy human subjects,” Clinical and Diagnostic Laboratory Immunology, vol. 8, no. 4, pp. 724–730, 2001. View at Publisher · View at Google Scholar · View at PubMed
  99. M. H. Vodkin, D. K. Howe, G. S. Visvesvara, and G. L. McLaughlin, “Identification of Acanthamoeba at the generic and specific levels using the polymerase chain reaction,” Journal of Protozoology, vol. 39, no. 3, pp. 378–385, 1992. View at Google Scholar
  100. J. M. Schroeder, G. C. Booton, J. Hay et al., “Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoebae from humans with keratitis and from sewage sludge,” Journal of Clinical Microbiology, vol. 39, no. 5, pp. 1903–1911, 2001. View at Publisher · View at Google Scholar · View at PubMed
  101. N. A. Khan, E. L. Jarroll, and T. A. Paget, “Acanthamoeba can be differentiated by the polymerase chain reaction and simple plating assays,” Current Microbiology, vol. 43, no. 3, pp. 204–208, 2001. View at Publisher · View at Google Scholar · View at PubMed
  102. J. Lorenzo-Morales, J. F. Lindo, E. Martinez et al., “Pathogenic Acanthamoeba strains from water sources in Jamaica, West Indies,” Annals of Tropical Medicine and Parasitology, vol. 99, no. 8, pp. 751–758, 2005. View at Publisher · View at Google Scholar · View at PubMed
  103. R. C. MacLean, N. Hafez, S. Tripathi, C. G. Childress, N. R. Ghatak, and F. Marciano-Cabral, “Identification of Acanthamoeba sp. in paraffin-embedded CNS tissue from an HIV+ individual by PCR,” Diagnostic Microbiology and Infectious Disease, vol. 57, no. 3, pp. 289–294, 2007. View at Publisher · View at Google Scholar · View at PubMed
  104. W. Meersseman, K. Lagrou, R. Sciot et al., “Rapidly fatal Acanthamoeba encephalitis and treatment of cryoglobulinemia,” Emerging Infectious Diseases, vol. 13, no. 3, pp. 469–471, 2007. View at Google Scholar
  105. J. Walochnik, A. Aichelburg, O. Assadian et al., “Granulomatous amoebic encephalitis caused by Acanthamoeba amoebae of genotype T2 in a human immunodeficiency virus-negative patient,” Journal of Clinical Microbiology, vol. 46, no. 1, pp. 338–340, 2008. View at Publisher · View at Google Scholar · View at PubMed
  106. P. Goldschmidt, S. Degorge, C. Saint-Jean et al., “Resistance of Acanthamoeba to classic DNA extraction methods used for the diagnosis of corneal infections,” British Journal of Ophthalmology, vol. 92, no. 1, pp. 112–115, 2008. View at Publisher · View at Google Scholar · View at PubMed
  107. G. C. Booton, G. S. Visvesvara, T. J. Byers, D. J. Kelly, and P. A. Fuerst, “Identification and distribution of Acanthamoeba species genotypes associated with nonkeratitis infections,” Journal of Clinical Microbiology, vol. 43, no. 4, pp. 1689–1693, 2005. View at Publisher · View at Google Scholar · View at PubMed
  108. S. Yagi, F. L. Schuster, and K. Bloch, “Demonstration of presence of Acanthamoeba mitochondrial DNA in brain tissue and cerebrospinal fluid by PCR in samples from a patient who died of granulomatous amebic encephalitis,” Journal of Clinical Microbiology, vol. 45, no. 6, pp. 2090–2091, 2007. View at Publisher · View at Google Scholar · View at PubMed
  109. S. Yagi, F. L. Schuster, and G. S. Visvesvara, “Demonstration of Balamuthia and Acanthamoeba mitochondrial DNA in sectioned archival brain and other tissues by the polymerase chain reaction,” Parasitology Research, vol. 102, no. 3, pp. 491–497, 2008. View at Publisher · View at Google Scholar · View at PubMed
  110. D. Rivière, F. M. Szczebara, J.-M. Berjeaud, J. Frère, and Y. Héchard, “Development of a real-time PCR assay for quantification of Acanthamoeba trophozoites and cysts,” Journal of Microbiological Methods, vol. 64, no. 1, pp. 78–83, 2006. View at Publisher · View at Google Scholar · View at PubMed
  111. P. P. Thompson, R. P. Kowalski, R. M. Q. Shanks, and Y. J. Gordon, “Validation of real-time PCR for laboratory diagnosis of Acanthamoeba keratitis,” Journal of Clinical Microbiology, vol. 46, no. 10, pp. 3232–3236, 2008. View at Publisher · View at Google Scholar · View at PubMed
  112. C. D. Illingworth and S. D. Cook, “Acanthamoeba keratitis,” Survey of Ophthalmology, vol. 42, no. 6, pp. 493–508, 1998. View at Publisher · View at Google Scholar
  113. N. Thebpatiphat, K. M. Hammersmith, F. N. Rocha et al., “Acanthamoeba keratitis: a parasite on the rise,” Cornea, vol. 26, no. 6, pp. 701–706, 2007. View at Publisher · View at Google Scholar · View at PubMed
  114. D. W. Clarke and J. Y. Niederkorn, “The pathophysiology of Acanthamoeba keratitis,” Trends in Parasitology, vol. 22, no. 4, pp. 175–180, 2006. View at Publisher · View at Google Scholar · View at PubMed
  115. S. T. Awwad, W. M. Petroll, J. P. McCulley, and H. D. Cavanagh, “Updates in Acanthamoeba keratitis,” Eye and Contact Lens, vol. 33, no. 1, pp. 1–8, 2007. View at Publisher · View at Google Scholar · View at PubMed
  116. K. R. Wilhelmus, D. B. Jones, A. Y. Matoba, M. B. Hamill, S. C. Pflugfelder, and M. P. Weikert, “Bilateral Acanthamoeba keratitis,” American Journal of Ophthalmology, vol. 145, no. 2, pp. 193–197, 2008. View at Publisher · View at Google Scholar · View at PubMed
  117. F. H. Theodore, F. A. Jakobiec, K. B. Juechter et al., “The diagnostic value of a ring infiltrate in acanthamoebic keratitis,” Ophthalmology, vol. 92, no. 11, pp. 1471–1479, 1985. View at Google Scholar
  118. M. B. Moore, J. P. McCulley, H. E. Kaufman, and J. B. Robin, “Radial keratoneuritis as a presenting sign in Acanthamoeba keratitis,” Ophthalmology, vol. 93, no. 10, pp. 1310–1315, 1986. View at Google Scholar
  119. A. S. Bacon, J. K. G. Dart, L. A. Ficker, M. M. Matheson, and P. Wright, “Acanthamoeba keratitis: the value of early diagnosis,” Ophthalmology, vol. 100, no. 8, pp. 1238–1243, 1993. View at Google Scholar
  120. I. Kremer, E. J. Cohen, R. C. Eagle Jr., I. Udell, and P. R. Laibson, “Histopathologic evaluation of stromal inflammation in Acanthamoeba keratitis,” CLAO Journal, vol. 20, no. 1, pp. 45–48, 1994. View at Google Scholar
  121. S. Sharma, P. Garg, and G. N. Rao, “Patient characteristics, diagnosis, and treatment of non-contact lens related Acanthamoeba keratitis,” British Journal of Ophthalmology, vol. 84, no. 10, pp. 1103–1108, 2000. View at Publisher · View at Google Scholar
  122. D. V. Seal, “Acanthamoeba keratitis update-incidence, molecular epidemiology and new drugs for treatment,” Eye, vol. 17, no. 8, pp. 893–905, 2003. View at Publisher · View at Google Scholar · View at PubMed
  123. C. E. Joslin, E. Y. Tu, M. E. Shoff et al., “The association of contact lens solution use and Acanthamoeba keratitis,” American Journal of Ophthalmology, vol. 144, no. 2, pp. 169–180.e2, 2007. View at Publisher · View at Google Scholar · View at PubMed
  124. K. J. Johns, D. M. O'Day, and W. S. Head, “Herpes simplex masquerade syndrome: Acanthamoeba keratitis,” Current Eye Research, vol. 6, no. 1, pp. 207–212, 1987. View at Google Scholar
  125. J. P. McCulley, H. Alizadeh, and J. Y. Niederkorn, “The diagnosis and management of Acanthamoeba keratitis,” CLAO Journal, vol. 26, no. 1, pp. 47–51, 2000. View at Google Scholar
  126. S. L. Karayianis, L. J. Genack, M. K. Lundergan, and G. B. Schumann, “Cytologic diagnosis of acanthamoebic keratitis,” Acta Cytologica, vol. 32, no. 4, pp. 491–494, 1988. View at Google Scholar
  127. O. E. Lund, F. H. Stefani, and W. Dechant, “Amoebic keratitis: a clinicopathological case report,” British Journal of Ophthalmology, vol. 62, no. 6, pp. 373–375, 1978. View at Google Scholar
  128. M. M. Qureshi and E. J. Bottone, “Acanthamoeba keratitis: a rational approach to microbiological diagnosis,” Medical Microbiology Letters, vol. 2, pp. 117–124, 1993. View at Google Scholar
  129. H. E. Grossniklaus, G. O. Waring IV, C. Akor, A. A. Castellano-Sanchez, and K. Bennett, “Evaluation of hematoxylin and eosin and special stains for the detection of Acanthamoeba keratitis in penetrating keratoplasties,” American Journal of Ophthalmology, vol. 136, no. 3, pp. 520–526, 2003. View at Publisher · View at Google Scholar
  130. M. J. Bharathi, R. Ramakrishnan, R. Meenakshi, S. Mittal, C. Shivakumar, and M. Srinivasan, “Microbiological diagnosis of infective keratitis: comparative evaluation of direct microscopy and culture results,” British Journal of Ophthalmology, vol. 90, no. 10, pp. 1271–1276, 2006. View at Publisher · View at Google Scholar · View at PubMed
  131. N. Gupta and R. Tandon, “Investigative modalities in infectious keratitis,” Indian Journal of Ophthalmology, vol. 56, no. 3, pp. 209–213, 2008. View at Publisher · View at Google Scholar
  132. J. de Nadai Barros, V. L. Degaspare-Mascaro, M. Lowen, M. C. Martins, and A. Foronda, “Diagnosis of Acanthamoeba corneal Infection by impression cytology: case report,” Arquivos Brasileiros de Oftalmologia, vol. 70, no. 2, pp. 343–346, 2007. View at Google Scholar
  133. W. Mathers, G. Stevens Jr., and M. Rodrigues, “Immunopathology and electron microscopy of Acanthamoeba keratitis,” American Journal of Ophthalmology, vol. 103, no. 5, part 3, pp. 626–635, 1987. View at Google Scholar
  134. K. M. Hammersmith, “Diagnosis and management of Acanthamoeba keratitis,” Current Opinion in Ophthalmology, vol. 17, no. 4, pp. 327–331, 2006. View at Publisher · View at Google Scholar · View at PubMed
  135. H. Kaur, L. J. Maguire, D. R. Salomao, and J. D. Cameron, “Rapid progression of amebic keratitis 1 week after corneal trauma and 1 year after LASIK,” Cornea, vol. 26, no. 2, pp. 212–214, 2007. View at Publisher · View at Google Scholar · View at PubMed
  136. R. J. Epstein, L. A. Wilson, G. S. Visvesvara, and E. G. Plourde Jr., “Rapid diagnosis of Acanthamoeba keratitis from corneal scrapings using indirect fluorescent antibody staining,” Archives of Ophthalmology, vol. 104, no. 9, pp. 1318–1321, 1986. View at Google Scholar
  137. F. Rivasi, L. Longanesi, C. Casolari et al., “Cytologic diagnosis of Acanthamoeba keratitis: report of a case with correlative study with indirect immunofluorescence and scanning electron microscopy,” Acta Cytologica, vol. 39, no. 4, pp. 821–826, 1995. View at Google Scholar
  138. K. R. Wilhelmus, M. S. Osato, and R. L. Font, “Rapid diagnosis of Acanthamoeba keratitis using calcofluor white,” Archives of Ophthalmology, vol. 104, no. 9, pp. 1309–1312, 1986. View at Google Scholar
  139. R. E. Silvany, M. W. Luckenbach, and M. B. Moore, “The rapid detection of Acanthamoeba in parafin-embedded secton of corneal tissue with calcofluor white,” Archives of Ophthalmology, vol. 105, no. 10, pp. 1366–1367, 1987. View at Google Scholar
  140. D. N. Parmar, S. T. Awwad, W. M. Petroll, R. W. Bowman, J. P. McCulley, and H. D. Cavanagh, “Tandem scanning confocal corneal microscopy in the diagnosis of suspected Acanthamoeba keratitis,” Ophthalmology, vol. 113, no. 4, pp. 538–547, 2006. View at Publisher · View at Google Scholar · View at PubMed
  141. H. D. Cavanagh, W. M. Petroll, H. Alizadeh, Y.-G. He, J. P. McCulley, and J. V. Jester, “Clinical and diagnostic use of in vivo confocal microscopy in patients with corneal disease,” Ophthalmology, vol. 100, no. 10, pp. 1444–1454, 1993. View at Google Scholar
  142. K. Winchester, W. D. Mathers, J. E. Sutphin, and T. E. Daley, “Diagnosis of Acanthamoeba keratitis in vivo with confocal microscopy,” Cornea, vol. 14, no. 1, pp. 10–17, 1995. View at Google Scholar
  143. D. R. Pfister, J. D. Cameron, J. H. Krachmer, and E. J. Holland, “Confocal microscopy findings of Acanthamoeba keratitis,” American Journal of Ophthalmology, vol. 121, no. 2, pp. 119–128, 1996. View at Google Scholar
  144. B. J. Cho and E. J. Holland, “In vivo tandem scanning confocal microscopy in Acanthamoeba keratitis,” Korean Journal of Ophthalmology, vol. 12, no. 2, pp. 112–117, 1998. View at Google Scholar
  145. S. C. Kaufman, D. C. Musch, M. W. Belin et al., “Confocal microscopy: a report by the American Academy of Ophthalmology,” Ophthalmology, vol. 111, no. 2, pp. 396–406, 2004. View at Publisher · View at Google Scholar · View at PubMed
  146. Y. Matsumoto, M. Dogru, E. A. Sato et al., “The application of in vivo confocal scanning laser microscopy in the management of Acanthamoeba keratitis,” Molecular Vision, vol. 13, pp. 1319–1326, 2007. View at Google Scholar
  147. A. Kobayashi, Y. Ishibashi, Y. Oikawa, H. Yokogawa, and K. Sugiyama, “In vivo and ex vivo laser confocal microscopy findings in patients with early-stage Acanthamoeba keratitis,” Cornea, vol. 27, no. 4, pp. 439–445, 2008. View at Publisher · View at Google Scholar · View at PubMed
  148. E. Y. Tu, C. E. Joslin, J. Sugar, G. C. Booton, M. E. Shoff, and P. A. Fuerst, “The relative value of confocal microscopy and superficial corneal scrapings in the diagnosis of Acanthamoeba keratitis,” Cornea, vol. 27, no. 7, pp. 764–772, 2008. View at Google Scholar
  149. J. A. Irvine and R. Ariyasu, “Limitations in tandem scanning confocal microscopy as a diagnostic tool for microbial keratitis,” Scanning, vol. 16, no. 5, pp. 307–311, 1994. View at Google Scholar
  150. S. Kilvington, D. F. P. Larkin, D. G. White, and J. R. Beeching, “Laboratory investigation of Acanthamoeba keratitis,” Journal of Clinical Microbiology, vol. 28, no. 12, pp. 2722–2725, 1990. View at Google Scholar
  151. S. M. Lee, Y. J. Choi, H. W. Ryu, H. H. Kong, and D. I. Chung, “Species identification and molecular characterization of Acanthamoeba isolated from contact lens paraphernalia,” Korean Journal of Ophthalmology, vol. 11, no. 1, pp. 39–50, 1997. View at Google Scholar
  152. M. Boost, P. Cho, S. Lai, and W. M. Sun, “Detection of Acanthamoeba in tap water and contact lens cases using polymerase chain reaction,” Optometry and Vision Science, vol. 85, no. 7, pp. 526–530, 2008. View at Publisher · View at Google Scholar · View at PubMed
  153. O. J. Lehmann, S. M. Green, N. Morlet et al., “Polymerase chain reaction analysis of corneal epithelial and tear samples in the diagnosis of Acanthamoeba keratitis,” Investigative Ophthalmology and Visual Science, vol. 39, no. 7, pp. 1261–1265, 1998. View at Google Scholar
  154. H. Yera, O. Zamfir, T. Bourcier et al., “Comparison of PCR, microscopic examination and culture for the early diagnosis and characterization of Acanthamoeba isolates from ocular infections,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 26, no. 3, pp. 221–224, 2007. View at Publisher · View at Google Scholar · View at PubMed
  155. P. Goldschmidt, H. Rostane, C. Saint-Jean et al., “Effects of topical anaesthetics and fluorescein on the real-time PCR used for the diagnosis of Herpesviruses and Acanthamoeba keratitis,” British Journal of Ophthalmology, vol. 90, no. 11, pp. 1354–1356, 2006. View at Publisher · View at Google Scholar · View at PubMed
  156. G. S. Visvesvara, A. J. Martinez, F. L. Schuster et al., “Leptomyxid ameba, a new agent of amebic meningoencephalitis in humans and animals,” Journal of Clinical Microbiology, vol. 28, no. 12, pp. 2750–2756, 1990. View at Google Scholar
  157. G. S. Visvesvara, F. L. Schuster, and A. J. Martinez, “Balamuthia mandrillaris, N. G., N. Sp., agent of amebic meningoencephalitis in humans and other animals,” The Journal of Eukaryotic Microbiology, vol. 40, no. 4, pp. 504–514, 1993. View at Google Scholar
  158. A. J. Martinez and G. S. Visvesvara, “Balamuthia mandrillaris infection,” Journal of Medical Microbiology, vol. 50, no. 3, pp. 205–207, 2001. View at Google Scholar
  159. F. L. Schuster and G. S. Visvesvara, “Balamuthia mandrillaris,” in Emerging Protozoan Pathogens, N. A. Khan, Ed., pp. 71–118, Taylor & Francis, New York, NY, USA, 2008. View at Google Scholar
  160. F. L. Schuster, T. H. Dunnebacke, G. C. Booton et al., “Environmental isolation of Balamuthia mandrillaris associated with a case of amebic encephalitis,” Journal of Clinical Microbiology, vol. 41, no. 7, pp. 3175–3180, 2003. View at Publisher · View at Google Scholar
  161. T. H. Dunnebacke, F. L. Schuster, S. Yagi, and G. C. Booton, “Balamuthia mandrillaris from soil samples,” Microbiology, vol. 150, no. 9, pp. 2837–2842, 2004. View at Publisher · View at Google Scholar · View at PubMed
  162. O. Foreman, J. Sykes, L. Ball, N. Yang, and H. De Cock, “Disseminated infection with Balamuthia mandrillaris in a dog,” Veterinary Pathology, vol. 41, no. 5, pp. 506–510, 2004. View at Publisher · View at Google Scholar · View at PubMed
  163. P. Intalapaporn, C. Suankratay, S. Shuangshoti, K. Phantumchinda, S. Keelawat, and H. Wilde, “Balamuthia mandrillaris meningoencephalitis: the first case in Southeast Asia,” American Journal of Tropical Medicine and Hygiene, vol. 70, no. 6, pp. 666–669, 2004. View at Google Scholar
  164. R. P. Reed, C. M. Cooke-Yarborough, A. L. Jaquiery et al., “Fatal granulomatous amoebic encephalitis caused by Balamuthia mandrillaris,” Medical Journal of Australia, vol. 167, no. 2, pp. 82–84, 1997. View at Google Scholar
  165. J. M. Riestra-Castaneda, R. Riestra-Castaneda, A. A. Gonzalez-Garrido et al., “Granulomatous amebic encephalitis due to Balamuthia mandrillaris (Leptomyxiidae): report of four cases from Mexico,” American Journal of Tropical Medicine and Hygiene, vol. 56, no. 6, pp. 603–607, 1997. View at Google Scholar
  166. T. R. Deetz, M. H. Sawyer, G. Billman, F. L. Schuster, and G. S. Visvesvara, “Successful treatment of Balamuthia amoebic encephalitis: presentation of 2 cases,” Clinical Infectious Diseases, vol. 37, no. 10, pp. 1304–1312, 2003. View at Publisher · View at Google Scholar · View at PubMed
  167. F. Bravo and M. R. Sanchez, “New and re-emerging cutaneous infectious diseases in Latin America and other geographic areas,” Dermatologic Clinics, vol. 21, no. 4, pp. 655–668, 2003. View at Publisher · View at Google Scholar
  168. A. S. Pritzker, B. K. Kim, D. Agrawal, P. M. Southern Jr., and A. G. Pandya, “Fatal granulomatous amebic encephalitis caused by Balamuthia mandrillaris presenting as a skin lesion,” Journal of the American Academy of Dermatology, vol. 50, no. 2, pp. S38–S41, 2004. View at Google Scholar
  169. A. Matin, R. Siddiqui, S. Jayasekera, and N. A. Khan, “Increasing importance of Balamuthia mandrillaris,” Clinical Microbiology Reviews, vol. 21, no. 3, pp. 435–448, 2008. View at Publisher · View at Google Scholar · View at PubMed
  170. C. F. Denney, V. J. Iragui, L. D. Uber-Zak et al., “Amebic meningoencephalitis caused by Balamuthia mandrillaris: case report and review,” Clinical Infectious Diseases, vol. 25, no. 6, pp. 1354–1358, 1997. View at Google Scholar
  171. J. F. Healy, “Balamuthia amebic encephalitis: radiographic and pathologic findings,” American Journal of Neuroradiology, vol. 23, no. 3, pp. 486–489, 2002. View at Google Scholar
  172. S. Jung, R. L. Schelper, G. S. Visvesvara, and H. T. Chang, “Balamuthia mandrillaris meningoencephalitis in an immunocompetent patient: an unusual clinical course and a favorable outcome,” Archives of Pathology and Laboratory Medicine, vol. 128, no. 4, pp. 466–468, 2004. View at Google Scholar
  173. A. Bakardjiev, P. H. Azimi, N. Ashouri et al., “Amebic encephalitis caused by Balamuthia mandrillaris: report of four cases,” Pediatric Infectious Disease Journal, vol. 22, no. 5, pp. 447–452, 2003. View at Publisher · View at Google Scholar
  174. D. A. Griesemer, L. L. Barton, C. M. Reese et al., “Amebic meningoencephalitis caused by Balamuthia mandrillaris,” Pediatric Neurology, vol. 10, no. 3, pp. 249–254, 1994. View at Publisher · View at Google Scholar
  175. J. L. Rowen, C. A. Doerr, H. Vogel, and C. J. Baker, “Balamuthia mandrillaris: a newly recognized agent for amebic meningoencephalitis,” Pediatric Infectious Disease Journal, vol. 14, no. 8, pp. 705–710, 1995. View at Google Scholar
  176. I. Bodi, N. Dutt, T. Hampton, and N. Akbar, “Fatal granulomatous amoebic meningoencephalitis due to Balamuthia mandrillaris,” Pathology Research and Practice, vol. 204, no. 12, pp. 925–928, 2008. View at Publisher · View at Google Scholar · View at PubMed
  177. S. Jayasekera, J. Sissons, J. Tucker et al., “Post-mortem culture of Balamuthia mandrillaris from the brain and cerebrospinal fluid of a case of granulomatous amoebic meningoencephalitis, using human brain microvascular endothelial cells,” Journal of Medical Microbiology, vol. 53, no. 10, pp. 1007–1012, 2004. View at Publisher · View at Google Scholar
  178. R. Kodet, E. Nohýnková, M. Tichý, J. Soukup, and G. S. Visvesvara, “Amebic encephalitis caused by Balamuthia mandrillaris in a Czech child: description of the first case from Europe,” Pathology Research and Practice, vol. 194, no. 6, pp. 423–429, 1998. View at Google Scholar
  179. B. J. Duke, R. W. Tyson, R. DeBiasi, J. E. Freeman, and K. R. Winston, “Balamuthia mandrillaris meningoencephalitis presenting with acute hydrocephalus,” Pediatric Neurosurgery, vol. 26, no. 2, pp. 107–111, 1997. View at Google Scholar
  180. Z. H. Huang, A. Ferrante, and R. F. Carter, “Serum antibodies to Balamuthia mandrillaris, a free-living amoeba recently demonstrated to cause granulomatous amoebic encephalitis,” Journal of Infectious Diseases, vol. 179, no. 5, pp. 1305–1308, 1999. View at Publisher · View at Google Scholar · View at PubMed
  181. F. L. Schuster, S. Honarmand, G. S. Visvesvara, and C. A. Glaser, “Detection of antibodies against free-living amoebae Balamuthia mandrillaris and Acanthamoeba species in a population of patients with encephalitis,” Clinical Infectious Diseases, vol. 42, no. 9, pp. 1260–1265, 2006. View at Publisher · View at Google Scholar · View at PubMed
  182. A. F. Kiderlen, E. Radam, and P. S. Tata, “Assessment of Balamuthia mandrillaris-specific serum antibody concentrations by flow cytometry,” Parasitology Research, vol. 104, no. 3, pp. 663–670, 2009. View at Publisher · View at Google Scholar · View at PubMed
  183. G. C. Booton, J. R. Carmichael, G. S. Visvesvara, T. J. Byers, and P. A. Fuerst, “Genotyping of Balamuthia mandrillaris based on nuclear 18S and mitochondrial 16s rRNA genes,” American Journal of Tropical Medicine and Hygiene, vol. 68, no. 1, pp. 65–69, 2003. View at Google Scholar
  184. G. C. Booton, J. R. Carmichael, G. S. Visvesvara, T. J. Byers, and P. A. Fuerst, “Identification of Balamuthia mandrillaris by PCR assay using the mitochondrial 16S rRNA gene as a target,” Journal of Clinical Microbiology, vol. 41, no. 1, pp. 453–455, 2003. View at Publisher · View at Google Scholar
  185. S. Yagi, G. C. Booton, G. S. Visvesvara, and F. L. Schuster, “Detection of Balamuthia mitochondrial 16S rRNA gene DNA in clinical specimens by PCR,” Journal of Clinical Microbiology, vol. 43, no. 7, pp. 3192–3197, 2005. View at Publisher · View at Google Scholar · View at PubMed
  186. M. Tavares, J. M. C. da Costa, S. S. Carpenter et al., “Diagnosis of first case of Balamuthia amoebic encephalitis in Portugal by immunofluorescence and PCR,” Journal of Clinical Microbiology, vol. 44, no. 7, pp. 2660–2663, 2006. View at Publisher · View at Google Scholar · View at PubMed
  187. A. F. Kiderlen, E. Radam, and A. Lewin, “Detection of Balamuthia mandrillaris DNA by real-time PCR targeting the RNase P gene,” BMC Microbiology, vol. 8, article 210, 2008. View at Publisher · View at Google Scholar · View at PubMed
  188. R. Michel, C. Wylezich, B. Hauroder, and A. V. Smirnov, “Phylogenetic position and notes on the ultrastructure of Sappinia diploidea (Thecamoebidae),” Protistology, vol. 4, pp. 319–325, 2006. View at Google Scholar
  189. L. P. Goodfellow, J. H. Belcher, and F. C. Page, “A light and electron microscopical study of Sappinia diploidea, a sexual amoeba,” Protistologica, vol. 2, pp. 207–216, 1974. View at Google Scholar
  190. M. W. Brown, F. W. Spiegel, and J. D. Silberman, “Amoeba at attention: phylogenetic affinity of Sappinia pedata,” Journal of Eukaryotic Microbiology, vol. 54, no. 6, pp. 511–519, 2007. View at Publisher · View at Google Scholar · View at PubMed
  191. Y. Qvarnstrom, A. J. da Silva, F. L. Schuster, B. B. Gelman, and G. S. Visvesvara, “Molecular confirmation of Sappinia pedata as a causative agent of amoebic encephalitis,” Journal of Infectious Diseases, vol. 199, no. 8, pp. 1139–1142, 2009. View at Publisher · View at Google Scholar · View at PubMed