Table of Contents Author Guidelines Submit a Manuscript
Interdisciplinary Perspectives on Infectious Diseases
Volume 2009, Article ID 593232, 12 pages
http://dx.doi.org/10.1155/2009/593232
Review Article

Effects of Climate Change on Ticks and Tick-Borne Diseases in Europe

1School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
2IS Insect Services GmbH, Haderslebener Straße 9, 12163 Berlin, Germany
3Department of Parasitology, Veterinary Faculty, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
4Applied Zoology/Animal Ecology, Institute of Biology, Free University of Berlin, 12163 Berlin, Germany
5Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden

Received 3 June 2008; Accepted 18 September 2008

Academic Editor: Bettina Fries

Copyright © 2009 J. S. Gray et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. E. Randolph, “Evidence that climate change has caused ‘emergence’ of tick-borne diseases in Europe?,” International Journal of Medical Microbiology, vol. 293, pp. 5–15, 2004. View at Publisher · View at Google Scholar
  2. J. S. Gray, “The development and seasonal activity of the tick Ixodes ricinus: a vector of Lyme borreliosis,” Review of Medical and Veterinary Entomology, vol. 79, no. 6, pp. 323–333, 1991. View at Google Scholar
  3. J. H. Christensen, B. Hewitson, A. Busuioc et al., “Regional climate projections,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning et al., Eds., pp. 847–940, Cambridge University Press, Cambridge, UK, 2007. View at Google Scholar
  4. A. Fischlin, G. F. Midgley, and J. T. Price, “Ecosystems, their properties, goods, and services,” in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, and C. E. Hanson, Eds., pp. 211–272, Cambridge University Press, Cambridge, UK, 2007. View at Google Scholar
  5. T. G. T. Jaenson, L. Tälleklint, L. Lundqvist, B. Olsen, J. Chirico, and H. Mejlon, “Geographical distribution, host associations, and vector roles of ticks (Acari: Ixodidae, Argasidae) in Sweden,” Journal of Medical Entomology, vol. 31, no. 2, pp. 240–256, 1994. View at Google Scholar
  6. H. Dautel and W. Knülle, “Cold hardiness, supercooling ability and causes of low-temperature mortality in the soft tick, Argas reflexus, and the hard tick, Ixodes ricinus (Acari: Ixodoidea) from Central Europe,” Journal of Insect Physiology, vol. 43, no. 9, pp. 843–854, 1997. View at Publisher · View at Google Scholar
  7. J. A. Campbell, The life history and development of the sheep tick, Ixodes ricinus L., in Scotland under natural and controlled conditions, Ph.D. thesis, University of Edinburgh, Edinburgh, UK, 1948.
  8. O. Kahl, Investigations on the water balance of ticks (Acari: Ixodoidea) in the course of their postembryonic development with special reference to active water vapour uptake of the engorged phases, Doctoral thesis, Free University of Berlin, Berlin, Germany, 1989.
  9. W. P. Gardiner, G. Gettinby, and J. S. Gray, “Models based on weather for the development phases of the sheep tick, Ixodes ricinus L,” Veterinary Parasitology, vol. 9, no. 1, pp. 75–86, 1981. View at Publisher · View at Google Scholar
  10. W. P. Gardiner and J. S. Gray, “A computer simulation of the effects of specific environmental factors on the development of the sheep tick, Ixodes ricinus L.,” Veterinary Parasitology, vol. 19, no. 1-2, pp. 133–144, 1986. View at Publisher · View at Google Scholar
  11. L. Tälleklint and T. G. T. Jaenson, “Increasing geographical distribution and density of Ixodes ricinus (Acari: Ixodidae) in Central and Northern Sweden,” Journal of Medical Entomology, vol. 35, no. 4, pp. 521–526, 1998. View at Google Scholar
  12. E. Lindgren, L. Tälleklint, and T. Polfeldt, “Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus,” Environmental Health Perspectives, vol. 108, no. 2, pp. 119–123, 2000. View at Publisher · View at Google Scholar
  13. E. Lindgren and R. Gustafson, “Tick-borne encephalitis in Sweden and climate change,” The Lancet, vol. 358, no. 9275, pp. 16–18, 2001. View at Publisher · View at Google Scholar · View at PubMed
  14. R. Gustafson, T. G. T. Jaenson, A. Gardulf, H. Mejlon, and B. Svenungsson, “Prevalence of Borrelia burgdorferi sensu lato infection in Ixodes ricinus in Sweden,” Scandinavian Journal of Infectious Diseases, vol. 27, no. 6, pp. 597–601, 1995. View at Publisher · View at Google Scholar
  15. M. Daniel, V. Danielová, B. Kříž, A. Jirsa, and J. Nožička, “Shift of the tick Ixodes ricinus and tick-borne encephalitis to higher altitudes in Central Europe,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 22, no. 5, pp. 327–328, 2003. View at Google Scholar
  16. M. Daniel, V. Danielová, B. Kříž, and I. Kott, “An attempt to elucidate the increased incidence of tick-borne encephalitis and its spread to higher altitudes in the Czech Republic,” International Journal of Medical Microbiology, vol. 293, pp. 55–62, 2004. View at Google Scholar
  17. J. Materna, M. Daniel, and V. Danielová, “Altitudinal distribution limit of the tick Ixodes ricinus shifted considerably towards higher altitudes in Central Europe: results of three years monitoring in the Krkonoše Mts. (Czech Republic),” Central European Journal of Public Health, vol. 13, no. 1, pp. 24–28, 2005. View at Google Scholar
  18. M. Daniel, “Influence of the microclimate on the vertical distribution of the tick, Ixodes ricinus (L.) in Central Europe,” Acarologia, vol. 34, no. 2, pp. 105–113, 1993. View at Google Scholar
  19. V. Danielová, N. Rudenko, M. Daniel et al., “Extension of Ixodes ricinus ticks and agents of tick-borne diseases to mountain areas in the Czech Republic,” International Journal of Medical Microbiology, vol. 296, pp. 48–53, 2006. View at Publisher · View at Google Scholar · View at PubMed
  20. H. Dautel, C. Dippel, R. Oehme, K. Hartelt, and E. Schettler, “Evidence for an increased geographical distribution of Dermacentor reticulatus in Germany and detection of Rickettsia sp. RpA4,” International Journal of Medical Microbiology, vol. 296, pp. 149–156, 2006. View at Publisher · View at Google Scholar · View at PubMed
  21. Z. Zivkovic, A. M. Nijhof, J. de la Fuente, K. M. Kocan, and F. Jongejan, “Experimental transmission of Anaplasma marginale by male Dermacentor reticulatus,” BMC Veterinary Research, vol. 3, article 32, pp. 1–6, 2007. View at Publisher · View at Google Scholar · View at PubMed
  22. R. M. Immler, “Untersuchungen zur Biologie und Ökologie der Zecke Dermacentor reticulatus (Fabricius, 1794) (Ixodidae) in einem endemischen Vorkommensgebiet,” Mitteilungen der Schweizerischen Entomologischen Gesellschaft, vol. 46, pp. 2–70, 1973. View at Google Scholar
  23. A. Liebisch and M. S. Rahman, “Zum Vorkommen und zur Ökologie einiger human- und veterinanärmedizinisch wichtiger Zeckenarten (Ixodidae) in Deutschland,” Zeitschrift für Angewandte Entomologie, vol. 82, pp. 29–37, 1976. View at Google Scholar
  24. D. Barutzki, M. Reule, R. Scheunemann, C. Heile, and E. Schein, “Die Babesiose des Hundes,” Deutsches Tierärzteblatt, no. 3, pp. 284–293, 2007. View at Google Scholar
  25. C. Heile, A.-O. Heydorn, and E. Schein, “Dermacentor reticulatus (Fabricius, 1794) - Verbreitung, biologie und vektor von Babesia canis in Deutschland,” Berliner und Munchener Tierärztliche Wochenschrift, vol. 119, no. 7-8, pp. 330–334, 2006. View at Google Scholar
  26. T. Sréter, Z. Széll, and I. Varga, “Spatial distribution of Dermacentor reticulatus and Ixodes ricinus in Hungary: evidence for change?,” Veterinary Parasitology, vol. 128, no. 3-4, pp. 347–351, 2005. View at Publisher · View at Google Scholar · View at PubMed
  27. M. J. Porchet, H. Sager, L. Muggli et al., “A descriptive epidemiological study on canine babesiosis in the Lake Geneva region,” Schweizer Archiv für Tierheilkunde, vol. 149, no. 10, pp. 457–465, 2007. View at Publisher · View at Google Scholar
  28. A. M. Nijhof, C. Bodaan, M. Postigo et al., “Ticks and associated pathogens collected from domestic animals in the Netherlands,” Vector-Borne and Zoonotic Diseases, vol. 7, no. 4, pp. 585–595, 2007. View at Publisher · View at Google Scholar · View at PubMed
  29. H. Dautel and W. Knülle, “The supercooling ability of ticks (Acari, Ixodoidea),” Journal of Comparative Physiology B, vol. 166, no. 8, pp. 517–524, 1996. View at Publisher · View at Google Scholar
  30. M. Zahler and R. Gothe, “Effect of temperature and humidity on egg hatch, moulting and longevity of larvae and nymphs of Dermacentor reticulatus (Ixodidae),” Applied Parasitology, vol. 36, no. 1, pp. 53–65, 1995. View at Google Scholar
  31. Ö. Ergönül, “Crimean-Congo haemorrhagic fever,” Lancet Infectious Diseases, vol. 6, no. 4, pp. 203–214, 2006. View at Publisher · View at Google Scholar · View at PubMed
  32. H. Hoogstraal, M. N. Kaiser, M. A. Traylor, S. Gaber, and E. Guindy, “Ticks (Ixodoidea) on birds migrating from Africa to Europe and Asia,” Bulletin of the World Health Organization, vol. 24, pp. 197–212, 1961. View at Google Scholar
  33. A. Estrada-Peña, “Climate, maps and ticks,” in Proceedings of the ESCMID Conference on Viral Haemorrhagic Fevers (VHFs '08), Istanbul, Turkey, June 2008.
  34. I. N. Emelyanova, “Seasonal changes and host adaptability of ticks of the species Hyalomma marginatum in the Stavropol territory,” Zurnal Mikrobiologii, epidemiologii I immunobiologii, no. 4, pp. 115–118, 2005 (Russian). View at Google Scholar
  35. A. Estrada-Peña and J. M. Venzal, “Factors affecting the distribution of the brown dog tick, Rhipicephalus sanguineus (Acari: Ixodidae) in an urban environment,” in Proceedings of the 4th International Conference on Rickettsiae and Rickettsial Diseases, Logroño, Spain, June 2005.
  36. M. I. Mínguez Tudela, A. Ruiz Mantecón, and A. Estrada-Peña, “Impactos sobre el sector Agrario,” in Evaluación Preliminar de los Impactos en España por Efecto del Cambio Climático, pp. 437–468, Ministerio de Medio Ambiente, Madrid, Spain, 2005. View at Google Scholar
  37. H. Dautel, C. Dippel, D. Kämmer, A. Werkhausen, and O. Kahl, “Winter activity of Ixodes ricinus in a Berlin forest,” International Journal of Medical Microbiology, vol. 298, pp. 50–54, 2008. View at Publisher · View at Google Scholar
  38. J. S. Gray, “Ixodes ricinus seasonal activity: implications of global warming indicated by revisiting tick and weather data,” International Journal of Medical Microbiology, vol. 298, pp. 19–24, 2008. View at Publisher · View at Google Scholar
  39. T. L. Schulze, G. S. Bowen, M. F. Lakat, W. E. Parkin, and J. K. Shisler, “The role of adult Ixodes dammini (Acari: Ixodidae) in the transmission of Lyme disease in New Jersey, USA,” Journal of Medical Entomology, vol. 22, no. 1, pp. 88–93, 1985. View at Google Scholar
  40. T. L. Schulze, G. S. Bowen, M. F. Lakat, W. E. Parkin, and J. K. Shisler, “Seasonal abundance and hosts of Ixodes dammini (Acari: Ixodidae) and other Ixodid ticks from an endemic lyme disease focus in New Jersey, USA,” Journal of Medical Entomology, vol. 23, no. 1, pp. 105–109, 1986. View at Google Scholar
  41. A. Estrada-Peña, J. M. Martinez, C. Sanchez Acedo, J. Quilez, and E. Del Cacho, “Phenology of the tick, Ixodes ricinus, in its southern distribution range (central Spain),” Medical and Veterinary Entomology, vol. 18, no. 4, pp. 387–397, 2004. View at Publisher · View at Google Scholar · View at PubMed
  42. J.-L. Perret, E. Guigoz, O. Rais, and L. Gern, “Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland),” Parasitology Research, vol. 86, no. 7, pp. 554–557, 2000. View at Publisher · View at Google Scholar
  43. A. H. Hirzel, G. Le Lay, V. Helfer, C. Randin, and A. Guisan, “Evaluating the ability of habitat suitability models to predict species presences,” Ecological Modelling, vol. 199, no. 2, pp. 142–152, 2006. View at Publisher · View at Google Scholar
  44. M. S. Corson, P. D. Teel, and W. E. Grant, “Microclimate influence in a physiological model of cattle-fever tick (Boophilus spp.) population dynamics,” Ecological Modelling, vol. 180, no. 4, pp. 487–514, 2004. View at Publisher · View at Google Scholar
  45. G. A. Mount, D. G. Haile, D. R. Barnard, and E. Daniels, “New version of LSTSIM for computer simulation of Amblyomma americanum (Acari: Ixodidae) population dynamics,” Journal of Medical Entomology, vol. 30, no. 5, pp. 843–857, 1993. View at Google Scholar
  46. N. H. Ogden, M. Bigras-Poulin, C. J. O'Callaghan et al., “A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis,” International Journal for Parasitology, vol. 35, no. 4, pp. 375–389, 2005. View at Publisher · View at Google Scholar · View at PubMed
  47. A. Estrada-Peña, Z. Zatansever, A. Gargili et al., “Modeling the spatial distribution of Crimean-Congo hemorrhagic fever outbreaks in Turkey,” Vector-Borne and Zoonotic Diseases, vol. 7, no. 4, pp. 667–678, 2007. View at Publisher · View at Google Scholar · View at PubMed
  48. A. Estrada-Peña, J. M. Venzal, and C. Sánchez Acedo, “The tick Ixodes ricinus: distribution and climate preferences in the western Palaearctic,” Medical and Veterinary Entomology, vol. 20, no. 2, pp. 189–197, 2006. View at Publisher · View at Google Scholar
  49. A. D. Ames, J. L. Hutcheson, A. Estrada-Peña, J. S. Gray, and W. C. Black, “Genetic variation among populations of the sheep tick, Ixodes ricinus L. (Acari: Ixodidae), as shown by PCR-SSCP analysis of 16S mitochondrial rDNA,” in Proceedings of the 5th International Symposium on Ectoparasites of Pets, A. Donaghue, Ed., Fort Collins, Colo, USA, April 2000.
  50. A. Estrada-Peña and J. M. Venzal, “Changes in habitat suitability for the tick Ixodes ricinus (Acari: Ixodidae) in Europe (1900–1999),” EcoHealth, vol. 3, no. 3, pp. 154–162, 2006. View at Publisher · View at Google Scholar
  51. K. S. White, Q. K. Ahmad, O. Anisimov et al., “Technical summary,” in Climate Change 2001: Impacts, Adaptations and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, M. Manning and C. Nobre, Eds., pp. 1–56, Cambridge University Press, Cambridge, UK, 2001. View at Google Scholar
  52. A. Estrada-Peña and J. M. Venzal, “Climate niches of tick species in the Mediterranean region: modeling of occurrence data, distributional constraints, and impact of climate change,” Journal of Medical Entomology, vol. 44, no. 6, pp. 1130–1138, 2007. View at Publisher · View at Google Scholar
  53. N. S. Crowcroft, D. Morgan, and D. Brown, “Viral haemorrhagic fevers in Europe—effective control requires a co-ordinated response,” Eurosurveillance, vol. 7, no. 3, pp. 31–32, 2002. View at Google Scholar
  54. E. Lindgren and T. G. T. Jaenson, Lyme Borreliosis in Europe: Influences of Climate and Climate Change, Epidemiology, Ecology and Adaptation Measures, WHO Regional Office for Europe, Copenhagen, Denmark, 2006.
  55. L. Bennet, A. Halling, and J. Berglund, “Increased incidence of Lyme borreliosis in southern Sweden following mild winters and during warm, humid summers,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 25, no. 7, pp. 426–432, 2006. View at Publisher · View at Google Scholar · View at PubMed
  56. P. Zeman and C. Beneš, “A tick-borne encephalitis ceiling in Central Europe has moved upwards during the last 30 years: possible impact of global warming?,” International Journal of Medical Microbiology, vol. 293, pp. 48–54, 2004. View at Publisher · View at Google Scholar
  57. B. Menne and K. L. Ebi, Eds., Climate Change and Adaptation Strategies for Human Health, B. Menne and K. L. Ebi, Eds., Springer, Darmstadt, Germany, 2006.
  58. S. E. Randolph, R. M. Green, M. F. Peacey, and D. J. Rogers, “Seasonal synchrony: the key to tick-borne encephalitis foci identified by satellite data,” Parasitology, vol. 121, no. 1, pp. 15–23, 2000. View at Publisher · View at Google Scholar
  59. S. E. Randolph and D. J. Rogers, “Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change,” Proceedings of the Royal Society B, vol. 267, no. 1454, pp. 1741–1744, 2000. View at Publisher · View at Google Scholar · View at PubMed
  60. D. Sumilo, L. Asokliene, A. Bormane, V. Vasilenko, I. Golovljova, and S. E. Randolph, “Climate change cannot explain the upsurge of tick-borne encephalitis in the Baltics,” PLoS ONE, vol. 2, no. 6, p. e500, 2007. View at Publisher · View at Google Scholar · View at PubMed
  61. C. Kölling, “Forests under the influence of climate change—chances and limitations of adaptation in forestry,” in Warning Signal Climate. Health Risks for Plants, Animals and Human Beings, J. L. Lozán, H. Graßl, G. Jendritzky, L. Karbe, and K. Reise, Eds., Wissenschaftliche Auswertungen, Hamburg, Germany, 2008. View at Google Scholar
  62. L. Eisen, “Climate change and tick-borne diseases: a research field in need of long-term empirical field studies,” International Journal of Medical Microbiology, vol. 298, pp. 12–18, 2008. View at Publisher · View at Google Scholar