Table of Contents Author Guidelines Submit a Manuscript
Interdisciplinary Perspectives on Infectious Diseases
Volume 2009 (2009), Article ID 617954, 8 pages
http://dx.doi.org/10.1155/2009/617954
Review Article

The Impact of HIV and Malaria Coinfection: What Is Known and Suggested Venues for Further Study

1Department of Medicine, Division of Infectious Diseases, Montefiore Medical Center, Albert Einstein College of Medicine, Ullmann 1205, 1300 Morris Park Avenue, Bronx, NY 10461, USA
2Department of Microbiology and Immunology, Albert Einstein College of Medicine, Ullmann 1225, 1300 Morris Park Avenue, Bronx, NY 10461, USA

Received 17 March 2009; Accepted 1 June 2009

Academic Editor: Herbert B. Tanowitz

Copyright © 2009 Sarah Hochman and Kami Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, “World Malaria Report 2008,” WHO Press, Geneva, Switzerland, 2008.
  2. UNAIDS, “AIDS epidemic update,” UNAIDS and WHO, Geneva, Switzerland, 2007.
  3. WHO, “Malaria and HIV-AIDS interactions and implications: conclusions of a technical consultation convened by WHO,” WHO, Geneva, Switzerland, June 2004.
  4. WHO, “Malaria Factsheet,” January 2009, http://www.who.int/mediacentre/factsheets/fs094/en/index.html.
  5. C. Menendez, A. F. Fleming, and P. L. Alonso, “Malaria-related anaemia,” Parasitology Today, vol. 16, no. 11, pp. 469–476, 2000. View at Publisher · View at Google Scholar
  6. K. Mohan, M. L. Dubey, N. K. Ganguly, and R. C. Mahajan, “Plasmodium falciparum: role of activated blood monocytes in erythrocyte membrane damage and red cell loss during malaria,” Experimental Parasitology, vol. 80, no. 1, pp. 54–63, 1995. View at Publisher · View at Google Scholar · View at PubMed
  7. A. M. Dondorp, B. J. Angus, K. Chotivanich et al., “Red blood cell deformability as a predictor of anemia in severe falciparum malaria,” American Journal of Tropical Medicine and Hygiene, vol. 60, no. 5, pp. 733–737, 1999. View at Google Scholar
  8. S. H. Abdalla and S. N. Wickramasinghe, “A study of erythroid progenitor cells in the bone marrow of Gambian children with falciparum malaria,” Clinical and Laboratory Haematology, vol. 10, no. 1, pp. 33–40, 1988. View at Google Scholar
  9. S. Abdalla, D. J. Weatherall, S. N. Wickramasinghe, and M. Hughes, “The anaemia of P. falciparum malaria,” British Journal of Haematology, vol. 46, no. 2, pp. 171–183, 1980. View at Google Scholar
  10. I. M. Medana and G. D. H. Turner, “Human cerebral malaria and the blood-brain barrier,” International Journal for Parasitology, vol. 36, no. 5, pp. 555–568, 2006. View at Publisher · View at Google Scholar · View at PubMed
  11. M. J. Boivin, “Effects of early cerebral malaria on cognitive ability in Senegalese children,” Journal of Developmental and Behavioral Pediatrics, vol. 23, no. 5, pp. 353–364, 2002. View at Google Scholar
  12. WHO, “Malaria and HIV interactions and their implications for public health policy,” WHO, Geneva, Switzerland, 2005.
  13. V. Appay and D. Sauce, “Immune activation and inflammation in HIV-1 infection: causes and consequences,” Journal of Pathology, vol. 214, no. 2, pp. 231–241, 2008. View at Publisher · View at Google Scholar · View at PubMed
  14. E. L. Korenromp, B. G. Williams, S. J. de Vlas et al., “Malaria attributable to the HIV-1 epidemic, sub-Saharan Africa,” Emerging Infectious Diseases, vol. 11, no. 9, pp. 1410–1419, 2005. View at Google Scholar
  15. J. G. Kublin, P. Patnaik, C. S. Jere et al., “Effect of Plasmodium falciparum malaria on concentration of HIV-1-RNA in the blood of adults in rural Malawi: a prospective cohort study,” The Lancet, vol. 365, no. 9455, pp. 233–240, 2005. View at Publisher · View at Google Scholar · View at PubMed
  16. J.-P. V. Geertruyden, M. Mulenga, W. Kasongo et al., “CD4 T-cell count and HIV-1 infection in adults with uncomplicated malaria,” Journal of Acquired Immune Deficiency Syndromes, vol. 43, no. 3, pp. 363–367, 2006. View at Publisher · View at Google Scholar · View at PubMed
  17. J. Mermin, J. R. Lule, and J. P. Ekwaru, “Association between malaria and CD4 cell count decline among persons with HIV,” Journal of Acquired Immune Deficiency Syndromes, vol. 41, no. 1, pp. 129–130, 2006. View at Publisher · View at Google Scholar
  18. D. Chandramohan and B. M. Greenwood, “Is there an interaction between human immunodeficiency virus and Plasmodium falciparum?” International Journal of Epidemiology, vol. 27, no. 2, pp. 296–301, 1998. View at Publisher · View at Google Scholar
  19. I. Kalyesubula, P. Musoke-Mudido, L. Marum et al., “Effects of malaria infection in human immunodeficiency virus type 1- infected Ugandan children,” Pediatric Infectious Disease Journal, vol. 16, no. 9, pp. 876–881, 1997. View at Publisher · View at Google Scholar
  20. M. R. Kamya, A. F. Gasasira, A. Yeka et al., “Effect of HIV-1 infection on antimalarial treatment outcomes in Uganda: a population-based study,” Journal of Infectious Diseases, vol. 193, no. 1, pp. 9–15, 2006. View at Publisher · View at Google Scholar · View at PubMed
  21. K. Grimwade, N. French, D. D. Mbatha, D. D. Zungu, M. Dedicoat, and C. F. Gilks, “Childhood malaria in a region of unstable transmission and high human immunodeficiency virus prevalence,” Pediatric Infectious Disease Journal, vol. 22, no. 12, pp. 1057–1063, 2003. View at Publisher · View at Google Scholar · View at PubMed
  22. K. Grimwade, N. French, D. D. Mbatha, D. D. Zungu, M. Dedicoat, and C. F. Gilks, “HIV infection as a cofactor for severe falciparum malaria in adults living in a region of unstable malaria transmission in South Africa,” AIDS, vol. 18, no. 3, pp. 547–554, 2004. View at Publisher · View at Google Scholar
  23. C. Cohen, A. Karstaedt, J. Frean et al., “Increased prevalence of severe malaria in HIV-infected adults in South Africa,” Clinical Infectious Diseases, vol. 41, no. 11, pp. 1631–1637, 2005. View at Publisher · View at Google Scholar · View at PubMed
  24. R. O. Otieno, C. Ouma, J. M. Ong'echa et al., “Increased severe anemia in HIV-1-exposed and HIV-1-positive infants and children during acute malaria,” AIDS, vol. 20, no. 2, pp. 275–280, 2006. View at Publisher · View at Google Scholar · View at PubMed
  25. A. M. van Eijk, J. G. Ayisi, F. O. ter Kuile et al., “HIV increases the risk of malaria in women of all gravidities in Kisumu, Kenya,” AIDS, vol. 17, no. 4, pp. 595–603, 2003. View at Publisher · View at Google Scholar
  26. S. D. Perrault, J. Hajek, K. Zhong et al., “Human immunodeficiency virus co-infection increases placental parasite density and transplacental malaria transmission in western Kenya,” American Journal of Tropical Medicine and Hygiene, vol. 80, no. 1, pp. 119–125, 2009. View at Google Scholar
  27. E. G. Dembo, V. Mwapasa, J. Montgomery et al., “Impact of human immunodeficiency virus infection in pregnant women on variant-specific immunity to malaria,” Clinical and Vaccine Immunology, vol. 15, no. 4, pp. 617–621, 2008. View at Publisher · View at Google Scholar · View at PubMed
  28. J. Keen, L. Serghides, K. Ayi et al., “HIV impairs opsonic phagocytic clearance of pregnancy-associated malaria parasites,” PLoS Medicine, vol. 4, no. 5, article e181, 2007. View at Publisher · View at Google Scholar · View at PubMed
  29. A. Ayouba, E. Nerrienet, E. Menu et al., “Mother-to-child transmission of human immunodeficiency virus type 1 in relation to the season in Yaounde, Cameroon,” American Journal of Tropical Medicine and Hygiene, vol. 69, no. 4, pp. 447–449, 2003. View at Google Scholar
  30. J. G. Ayisi, A. M. van Eijk, R. D. Newman et al., “Maternal malaria and perinatal HIV transmission, Western Kenya,” Emerging Infectious Diseases, vol. 10, no. 4, pp. 643–652, 2004. View at Google Scholar
  31. A. Ayouba, C. Badaut, A. Kfutwah et al., “Specific stimulation of HIV-1 replication in human placental trophoblasts by an antigen of Plasmodium falciparum,” AIDS, vol. 22, no. 6, pp. 785–787, 2008. View at Publisher · View at Google Scholar · View at PubMed
  32. S. de Kossodo and G. E. Grau, “Profiles of cytokine production in relation with susceptibility to cerebral malaria,” The Journal of Immunology, vol. 151, no. 9, pp. 4811–4820, 1993. View at Google Scholar
  33. D. Prakash, C. Fesel, R. Jain, P.-A. Cazenave, G. C. Mishra, and S. Pied, “Clusters of cytokines determine malaria severity in Plasmodium falciparum-infected patients from endemic areas of central India,” Journal of Infectious Diseases, vol. 194, no. 2, pp. 198–207, 2006. View at Publisher · View at Google Scholar · View at PubMed
  34. K. E. Lyke, R. Burges, Y. Cissoko et al., “Serum levels of the proinflammatory cytokines interleukin-1 β (IL-1β), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls,” Infection and Immunity, vol. 72, no. 10, pp. 5630–5637, 2004. View at Publisher · View at Google Scholar · View at PubMed
  35. P. Bejon, G. Warimwe, C. L. Mackintosh et al., “Analysis of immunity to febrile malaria in children that distinguishes immunity from lack of exposure,” Infection and Immunity, vol. 77, no. 5, pp. 1917–1923, 2009. View at Publisher · View at Google Scholar · View at PubMed
  36. B. C. Urban, D. J. P. Ferguson, A. Pain et al., “Plasmodium falciparuminfected erythrocytes modulate the maturation of dendritic cells,” Nature, vol. 400, no. 6739, pp. 73–77, 1999. View at Publisher · View at Google Scholar · View at PubMed
  37. R. Ing, M. Segura, N. Thawani, M. Tam, and M. M. Stevenson, “Interaction of mouse dendritic cells and malaria-infected erythrocytes: uptake, maturation, and antigen presentation,” The Journal of Immunology, vol. 176, no. 1, pp. 441–450, 2006. View at Google Scholar
  38. J. A. Perry, C. S. Olver, R. C. Burnett, and A. C. Avery, “Cutting edge: the acquisition of TLR tolerance during malaria infection impacts T cell activation,” The Journal of Immunology, vol. 174, no. 10, pp. 5921–5925, 2005. View at Google Scholar
  39. H. E. Gendelman, I. Grant, I. P. Everall, and S. A. Lipton, Eds., The Neurology of AIDS, Oxford University Press, London, UK, 2005.
  40. A. Yadav, P. Fitzgerald, M. M. Sajadi et al., “Increased expression of suppressor of cytokine signaling-1 (SOCS-1): a mechanism for dysregulated T helper-1 responses in HIV-1 disease,” Virology, vol. 385, no. 1, pp. 126–133, 2009. View at Publisher · View at Google Scholar · View at PubMed
  41. M. Clerici and G. M. Shearer, “A TH1TH2 switch is a critical step in the etiology of HIV infection,” Trends in Immunology, vol. 14, no. 3, pp. 107–111, 1993. View at Google Scholar
  42. X. Ma and L. J. Montaner, “Proinflammatory response and IL-12 expression in HIV-1 infection,” Journal of Leukocyte Biology, vol. 68, no. 3, pp. 383–390, 2000. View at Google Scholar
  43. H. Brown, S. Rogerson, T. Taylor et al., “Blood-brain barrier function in cerebral malaria in Malawian children,” American Journal of Tropical Medicine and Hygiene, vol. 64, no. 3-4, pp. 207–213, 2001. View at Google Scholar
  44. M. R. Gillrie, G. Krishnegowda, K. Lee et al., “Src-family kinase-dependent disruption of endothelial barrier function by Plasmodium falciparum merozoite proteins,” Blood, vol. 110, no. 9, pp. 3426–3435, 2007. View at Publisher · View at Google Scholar · View at PubMed
  45. P. Susomboon, Y. Maneerat, P. Dekumyoy et al., “Down-regulation of tight junction mRNAs in human endothelial cells co-cultured with Plasmodium falciparum-infected erythrocytes,” Parasitology International, vol. 55, no. 2, pp. 107–112, 2006. View at Publisher · View at Google Scholar · View at PubMed
  46. I. M. B. Francischetti, K. B. Seydel, R. Q. Monteiro et al., “Plasmodium falciparum-infected erythrocytes induce tissue factor expression in endothelial cells and support the assembly of multimolecular coagulation complexes,” Journal of Thrombosis and Haemostasis, vol. 5, no. 1, pp. 155–165, 2007. View at Publisher · View at Google Scholar · View at PubMed
  47. I. M. B. Francischetti, K. Seydel, and R. Monteiro, “Blood coagulation, inflammation, and malaria,” Microcirculation, vol. 15, no. 2, pp. 81–107, 2008. View at Publisher · View at Google Scholar · View at PubMed
  48. B. Traoré, K. Muanza, S. Looareesuwan et al., “Cytoadherence characteristics of Plasmodium falciparum isolates in Thailand using an in vitro human lung endothelial cells model,” American Journal of Tropical Medicine and Hygiene, vol. 62, no. 1, pp. 38–44, 2000. View at Google Scholar
  49. J. Li, W.-L. Chang, G. Sun et al., “Intercellular adhesion molecule 1 is important for the development of severe experimental malaria but is not required for leukocyte adhesion in the brain,” Journal of Investigative Medicine, vol. 51, no. 3, pp. 128–140, 2003. View at Google Scholar
  50. R. Lucas, P. Juillard, E. Decoster et al., “Crucial role of tumor necrosis factor (TNF) receptor 2 and membrane-bound TNF in experimental cerebral malaria,” European Journal of Immunology, vol. 27, no. 7, pp. 1719–1725, 1997. View at Publisher · View at Google Scholar · View at PubMed
  51. J. G. Prudhomme, I. W. Sherman, K. M. Land, A. V. Moses, S. Stenglein, and J. A. Nelson, “Studies of Plasmodium falciparum cytoadherence using immortalized human brain capillary endothelial cells,” International Journal for Parasitology, vol. 26, no. 6, pp. 647–655, 1996. View at Publisher · View at Google Scholar
  52. M. M. Mota, W. Jarra, E. Hirst, P. K. Patnaik, and A. A. Holder, “Plasmodium chabaudi-infected erythrocytes adhere to CD36 and bind to microvascular endothelial cells in an organ-specific way,” Infection and Immunity, vol. 68, no. 7, pp. 4135–4144, 2000. View at Publisher · View at Google Scholar
  53. L. Meroni, A. Riva, P. Morelli et al., “Increased CD36 expression on circulating monocytes during HIV infection,” Journal of Acquired Immune Deficiency Syndromes, vol. 38, no. 3, pp. 310–313, 2005. View at Google Scholar
  54. C. M. Buckner, A. J. Luers, T. M. Calderon, E. A. Eugenin, and J. W. Berman, “Neuroimmunity and the blood-brain barrier: molecular regulation of leukocyte transmigration and viral entry into the nervous system with a focus on neuroAIDS,” Journal of Neuroimmune Pharmacology, vol. 1, no. 2, pp. 160–181, 2006. View at Publisher · View at Google Scholar · View at PubMed
  55. E. A. Eugenin, K. Osiecki, L. Lopez, H. Goldstein, T. M. Calderon, and J. W. Berman, “CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS,” Journal of Neuroscience, vol. 26, no. 4, pp. 1098–1106, 2006. View at Publisher · View at Google Scholar · View at PubMed
  56. T. S. Skinner-Adams, J. S. McCarthy, D. L. Gardiner, P. M. Hilton, and K. T. Andrews, “Antiretrovirals as antimalarial agents,” Journal of Infectious Diseases, vol. 190, no. 11, pp. 1998–2000, 2004. View at Publisher · View at Google Scholar · View at PubMed
  57. S. Parikh, J. Gut, E. Istvan, D. E. Goldberg, D. V. Havlir, and P. J. Rosenthal, “Antimalarial activity of human immunodeficiency virus type 1 protease inhibitors,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 7, pp. 2983–2985, 2005. View at Publisher · View at Google Scholar · View at PubMed
  58. K. T. Andrews, D. P. Fairlie, P. K. Madala et al., “Potencies of human immunodeficiency virus protease inhibitors in vitro against Plasmodium falciparum and in vivo against murine malaria,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 2, pp. 639–648, 2006. View at Publisher · View at Google Scholar · View at PubMed
  59. C. V. Hobbs, T. Voza, A. Coppi et al., “HIV protease inhibitors inhibit the development of preerythrocytic-stage Plasmodium parasites,” Journal of Infectious Diseases, vol. 199, no. 1, pp. 134–141, 2009. View at Publisher · View at Google Scholar · View at PubMed
  60. S. Nathoo, L. Serghides, and K. C. Kain, “Effect of HIV-1 antiretroviral drugs on cytoadherence and phagocytic clearance of Plasmodium falciparum-parasitised erythrocytes,” The Lancet, vol. 362, no. 9389, pp. 1039–1041, 2003. View at Publisher · View at Google Scholar · View at PubMed
  61. A. Savarino, M. B. Lucia, E. Rastrelli et al., “Anti-HIV effects of chloroquine: inhibition of viral particle glycosylation and synergism with protease inhibitors,” Journal of Acquired Immune Deficiency Syndromes, vol. 35, no. 3, pp. 223–232, 2004. View at Publisher · View at Google Scholar
  62. T. S. Skinner-Adams, K. T. Andrews, L. Melville, J. McCarthy, and D. L. Gardiner, “Synergistic interactions of the antiretroviral protease inhibitors saquinavir and ritonavir with chloroquine and mefloquine against Plasmodium falciparum in vitro,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 2, pp. 759–762, 2007. View at Publisher · View at Google Scholar · View at PubMed
  63. J. Mermin, J. P. Ekwaru, C. A. Liechty et al., “Effect of co-trimoxazole prophylaxis, antiretroviral therapy, and insecticide-treated bednets on the frequency of malaria in HIV-1-infected adults in Uganda: a prospective cohort study,” The Lancet, vol. 367, no. 9518, pp. 1256–1261, 2006. View at Publisher · View at Google Scholar · View at PubMed
  64. J. Whitworth, D. Morgan, M. Quigley et al., “Effect of HIV-1 and increasing immunosuppression on malaria parasitaemia and clinical episodes in adults in rural Uganda: a cohort study,” The Lancet, vol. 356, no. 9235, pp. 1051–1056, 2000. View at Google Scholar
  65. I. F. Hoffman, C. S. Jere, T. E. Taylor et al., “The effect of Plasmodium falciparum malaria on HIV-1 RNA blood plasma concentration,” AIDS, vol. 13, no. 4, pp. 487–494, 1999. View at Google Scholar
  66. N. H. Hunt and G. E. Grau, “Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria,” Trends in Immunology, vol. 24, no. 9, pp. 491–499, 2003. View at Publisher · View at Google Scholar
  67. H. Wang, J. Sun, and H. Goldstein, “Human immunodeficiency virus type 1 infection increases the in vivo capacity of peripheral monocytes to cross the blood-brain barrier into the brain and the in vivo sensitivity of the blood-brain barrier to disruption by lipopolysaccharide,” Journal of Virology, vol. 82, no. 15, pp. 7591–7600, 2008. View at Publisher · View at Google Scholar · View at PubMed