Table of Contents Author Guidelines Submit a Manuscript
Corrigendum

A corrigendum for this article has been published. To view the corrigendum, please click here.

Interdisciplinary Perspectives on Infectious Diseases
Volume 2017 (2017), Article ID 7279830, 14 pages
https://doi.org/10.1155/2017/7279830
Research Article

Association between Virulence Factors and Extended Spectrum Beta-Lactamase Producing Klebsiella pneumoniae Compared to Nonproducing Isolates

1Microbiology & Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
2Department of Pharmaceutical Sciences, College of Pharmacy, Princess Norah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia

Correspondence should be addressed to Rasha Fathy Barwa; moc.liamg@0002ahsar

Received 12 January 2017; Revised 6 April 2017; Accepted 26 April 2017; Published 8 June 2017

Academic Editor: Mary E. Marquart

Copyright © 2017 Mustafa Muhammad Gharrah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Paterson and R. A. Bonomo, “Extended-spectrum β-lactamases: a clinical update,” Clinical Microbiology Reviews, vol. 18, no. 4, pp. 657–686, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Bourjilat, B. Bouchrif, N. Dersi, J. D. P. G. Claude, H. Amarouch, and M. Timinouni, “Emergence of extended-spectrum beta-lactamase-producing Escherichia coli in community-acquired urinary infections in Casablanca, Morocco,” The Journal of Infection in Developing Countries, vol. 5, pp. 850–855, 2011. View at Google Scholar
  3. T. M. Coque, A. Oliver, J. C. Pérez-Díaz, F. Baquero, and R. Cantón, “Genes encoding TEM-4, SHV-2, and CTX-M-10 extended-spectrum β-lactamases are carried by multiple Klebsiella pneumoniae clones in a single hospital (Madrid, 1989 to 2000),” Antimicrobial Agents and Chemotherapy, vol. 46, no. 2, pp. 500–510, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Canton and T. M. Coque, “The CTX-M β-Lactamase pandemic,” Current Opinion in Microbiology, vol. 9, pp. 466–475, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. G. Jenkins and A. N. Schuetz, “Current concepts in laboratory testing to guide antimicrobial therapy,” Mayo Clinic Proceedings, vol. 87, no. 3, pp. 290–308, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. D. L. Paterson, “Resistance in gram-negative bacteria: enterobacteriaceae,” The American Journal of Medicine, vol. 119, no. 6, pp. S20–S28, 2006. View at Publisher · View at Google Scholar
  7. J. D. Pitout and K. B. Laupland, “Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern,” The Lancet Infectious Diseases, vol. 8, no. 3, pp. 159–166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. U. Dobrindt, “(Patho-)genomics of Escherichia coli,” International Journal of Medical Microbiology, vol. 295, no. 6-7, pp. 357–371, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Vuotto, F. Longo, M. P. Balice, G. Donelli, and P. E. Varaldo, “Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae,” Pathogens, vol. 3, pp. 743–758, 2014. View at Publisher · View at Google Scholar
  10. D. M. Livermore and N. Woodford, “The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter,” Trends in Microbiology, vol. 14, no. 9, pp. 413–420, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Elmer, A. Jr Stephen, J. William, P. Gary, S. Paul, and W. Gall, Koneman's Color Atlas and Textbook of Diagnostic Microbiology, Lippincott Williams and Wilkins, London, UK, 6th edition, 2006.
  12. Clinical and Laboratory Standard Institute, “Performance standards for antimicrobial susceptibility testing. Twenty-four Informational supplements,” CLSI Document 2014; M100-S24, CLSI, Wayne, Pa, USA, 2014. View at Google Scholar
  13. R. Hassan, R. Barwa, and R. H. Shehata, “Antimicrobial resistance genes and some virulence factors in Escherichia coli and Streptococcus pyogenes isolated from Mansoura University Hospitals,” The Egyptian Journal of Medical Microbiology, vol. 19, no. 1, pp. 27–40, 2010. View at Google Scholar
  14. N. Fam, D. Gamal, M. El Said, L. Aboul-Fadl et al., “Detection of plasmid-mediated AmpC beta-lactamases in clinically significant bacterial isolates in a research institute hospital in Egypt,” Life Science Journal, vol. 10, no. 2, pp. 2294–2304, 2013. View at Google Scholar · View at Scopus
  15. JA. Jacoby, AmpC β-Lactamases. Clinical Microbiology Reviews, vol. 22, pp. 161–182, 2009. View at Publisher · View at Google Scholar
  16. E. Panus, M. B. Chifiriuc, M. Bucur et al., “Virulence, pathogenicity, antibiotic resistance and plasmid profile of Escherichia coli strains isolated from drinking and recreational waters,” in 17th European Congress of Clinical Microbiology and Infectious Diseases and 25th International Congress of Chemotherapy, 2008. View at Scopus
  17. M. Vagarali, S. Karadesai, C. Patil, S. Metgud, and M. Mutnal, “Haemagglutination and siderophore production as the urovirulence markers of uropathogenic Escherichia coli,” Indian Journal of Medical Microbiology, vol. 26, no. 1, pp. 68–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Vandekerchove, F. Vandemaele, C. Adriaensen et al., “Virulence-associated traits in avian Escherichia coli: comparison between isolates from colibacillosis-affected and clinically healthy layer flocks,” Veterinary Microbiology, vol. 108, no. 1-2, pp. 75–87, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Stepanovic, D. Vukovic, I. Dakic, B. Savic, and M. Svabio-Vlahovic, “A modified microtiter-plate test for quantification of staphylococcal biofilm formation,” Journal of Microbiological Methods, vol. 40, no. 2, pp. 175–179, 2000. View at Publisher · View at Google Scholar
  20. A. Abdi-Ali, M. Mohammadi-Mehr, and Y. Agha Alaei, “Bactericidal activity of various antibiotics against biofilm-producing Pseudomonas aeruginosa,” International Journal of Antimicrobial Agents, vol. 27, no. 3, pp. 196–200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H.-C. Lee, Y.-C. Chuang, W.-L. Yu et al., “Clinical implications of hypermucoviscosity phenotype in Klebsiella pneumoniae isolates: association with invasive syndrome in patients with community-acquired bacteraemia,” Journal of Internal Medicine, vol. 259, no. 6, pp. 606–614, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. G. Collee, R. S. Miles, and B. Watt, “Tests for identification of bacteria,” in Mackie and McCartney Practical Medical Microbiology, J. G. Collee, A. G. Fraser, B. P. Marmion, and A. Simmon, Eds., pp. 131–149, Churchill Livingston, New York, NY, USA, 14th edition, 1996. View at Google Scholar
  23. R. El Fertas-Aissani, Y. Messai, S. Alouache, and R. Bakour, “Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens,” Pathologie Biologie, vol. 61, no. 5, pp. 209–216, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Hassan, W. El-Naggar, E. El-Sawy, and A. El-Mahdy, “Characterization of some virulence factors associated with Enterbacteriaceae isolated from urinary tract infections in Mansoura Hospitals,” N. Egypt J Med Microbiol, vol. 20, no. 2, pp. 9–17, 2011. View at Google Scholar
  25. M. V. P. Rodrigues, A. M. Fusco-Almeida, N. G. P. Nogueira, B. W. Bertoni, S. C. Z. Torres, and R. C. L. R. Pietro, “Evaluation of the spreading of isolated bacteria from dental consulting-room using RAPD technique,” Latin American Journal of Pharmacy, vol. 27, pp. 805–811, 2008. View at Google Scholar
  26. F. Eftekhar and P. Nouri, “Correlation of RAPD-PCR profiles with ESBL production in clinical isolates of Klebsiella pneumoniae in Tehran,” Journal of Clinical and Diagnostic Research, vol. 9, no. 1, pp. DC01–DC03, 2015. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. Bachman, J. E. Oyler, S. H. Burns et al., “Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2,” Infection and Immunity, vol. 79, no. 8, pp. 3309–3316, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. V. L. Yu, D. S. Hansen, C. K. Wen et al., “Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections,” Emerging Infectious Diseases, vol. 13, no. 7, pp. 986–993, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Kumar, P. Sun, J. Vamathevan et al., “Comparative genomics of Klebsiella pneumoniae strains with different antibiotic resistance profiles,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 9, pp. 4267–4276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. S. M. Atmani, Y. Messai, S. Alouache et al., “Virulence characteristics and genetic background of ESBL-producing Klebsiella pneumoniae isolates from wastewater,” Fresenius Environmental Bulletin, vol. 24, no. 1, pp. 103–112, 2015. View at Google Scholar · View at Scopus
  31. R. N. Jones, C. Mendes, P. J. Turner, and R. Masterton, “An overview of the Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) Program: 1997–2004,” Diagnostic Microbiology and Infectious Disease, vol. 53, no. 4, pp. 247–256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Shin and K. S. Ko, “Comparative study of genotype and virulence in CTX-M-producing and non-extended-spectrum-β-lactamase-producing Klebsiella pneumoniae isolates,” Antimicrobial Agents and Chemotherapy, vol. 58, no. 4, pp. 2463–2467, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. A. A. J. Aljanaby and A. H. A. Alhasani, “Virulence factors and antibiotic susceptibility patterns of multidrug resistance Klebsiella pneumoniae isolated from different clinical infections,” African Journal of Microbiology Research, vol. 10, no. 22, pp. 829–843, 2016. View at Publisher · View at Google Scholar
  34. M. J. Schwaber and Y. Carmeli, “Mortality and delay in effective therapy associated with extended-spectrum β-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis,” Journal of Antimicrobial Chemotherapy, vol. 60, no. 5, pp. 913–920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Sahly, S. Navon-Venezia, L. Roesler et al., “Extended-spectrum β-lactamase production is associated with an increase in cell invasion and expression of fimbrial adhesins in Klebsiella pneumoniae,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 9, pp. 3029–3034, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. Z.-Q. Wei, Y.-G. Chen, Y.-S. Yu, W.-X. Lu, and L.-J. Li, “Nosocomial spread of multi-resistant Klebsiella pneumoniae containing a plasmid encoding multiple β-lactamases,” Journal of Medical Microbiology, vol. 54, no. 9, pp. 885–888, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. O. I. Ahmed, S. A. El-Hady, T. M. Ahmed, and I. Z. Ahmed, “Detection of bla SHV and bla CTX-M genes in ESBL producing Klebsiella pneumoniae isolated from Egyptian patients with suspected nosocomial infections,” Egyptian Journal of Medical Human Genetics, vol. 14, no. 3, pp. 277–283, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. Bellifa S, H. Hassaine, D. Balestrino et al., “Evaluation of biofilm formation of Klebsiella pneumoniae isolated from medical devices at the University Hospital of Tlemcen, Algeria,” African Journal of Microbiology Research, vol. 7, no. 49, pp. 5558–5564, 2013. View at Publisher · View at Google Scholar
  39. C. Elkins, K. J. Morrow Jr., and B. Olsen, “Serum resistance in Haemophilus ducreyi requires outer membrane protein DsrA,” Infection and Immunity, vol. 68, no. 3, pp. 1608–1619, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Gundogan and U. A. Yakar, “Siderophore production, serum resistance, hemolytic activity and extended-spectrum β-lactamase-producing Klebsiella species isolated from milk and milk products,” Journal of Food Safety, vol. 27, no. 3, pp. 251–264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Sahly, H. Aucken, V. J. Benedí et al., “Increased serum resistance in Klebsiella pneumoniae strains producing extended-spectrum β-lactamases,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 9, pp. 3477–3482, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. H.-A. Lin, Y.-L. Huang, K.-M. Yeh, L. K. Siu, J.-C. Lin, and F.-Y. Chang, “Regulator of the mucoid phenotype A gene increases the virulent ability of extended-spectrum beta-lactamase-producing serotype non-K1/K2 Klebsiella pneumonia,” Journal of Microbiology, Immunology and Infection, vol. 49, no. 4, pp. 494–501, 2016. View at Publisher · View at Google Scholar · View at Scopus
  43. A. M. El-Mahdy, E. M. A. El-Sawy, R. Hassan, and W. A. El-Naggar, Characterization of some virulence factors associated with clinically important Enterobacteriaceae [M.S. thesis], Faculty of Pharmacy, Mansoura University, 2011.
  44. A. S. Shon, R. P. S. Bajwa, and T. A. Russo, “Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed,” Virulence, vol. 4, no. 2, pp. 107–118, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Kawai, “Hypermucoviscosity: an extremely sticky phenotype of Klebsiella pneumoniae associated with emerging destructive tissue abscess syndrome,” Clinical Infectious Diseases, vol. 42, no. 10, pp. 1359–1361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. I. R. Lee, J. S. Molton, K. L. Wyres et al., “Differential host susceptibility and bacterial virulence factors driving Klebsiella liver abscess in an ethnically diverse population,” Scientific Reports, vol. 6, Article ID 29316, 2016. View at Publisher · View at Google Scholar · View at Scopus
  47. C.-T. Fang, Y.-P. Chuang, C.-T. Shun, S.-C. Chang, and J.-T. Wang, “A Novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications,” Journal of Experimental Medicine, vol. 199, no. 5, pp. 697–705, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. C.-H. Lee, J.-W. Liu, L.-H. Su, C.-C. Chien, C.-C. Li, and K.-D. Yang, “Hypermucoviscosity associated with Klebsiella pneumoniae-mediated invasive syndrome: a prospective cross-sectional study in Taiwan,” International Journal of Infectious Diseases, vol. 14, no. 8, pp. e688–e692, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. W.-L. Yu, M.-F. Lee, H.-J. Tang, M.-C. Chang, and Y.-C. Chuang, “Low prevalence of rmpA and high tendency of rmpA mutation correspond to low virulence of extended spectrum β-lactamase-producing Klebsiella pneumoniae isolates,” Virulence, vol. 6, no. 2, pp. 162–172, 2015. View at Publisher · View at Google Scholar · View at Scopus
  50. M. K. Paczosa and J. Mecsas, “Klebsiella pneumoniae: going on the offense with a strong defense,” Microbiology and Molecular Biology Reviews, vol. 80, no. 3, pp. 629–661, 2016. View at Publisher · View at Google Scholar
  51. R. Podschun, S. Pietsch, C. Höller, and U. Ullmann, “Incidence of Klebsiella species in surface waters and their expression of virulence factors,” Applied and Environmental Microbiology, vol. 67, no. 7, pp. 3325–3327, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Koczura and A. Kaznowski, “Occurrence of the Yersinia high-pathogenicity island and iron uptake systems in clinical isolates of Klebsiella pneumoniae,” Microbial Pathogenesis, vol. 35, no. 5, pp. 197–202, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Gundogan, S. Citak, and E. Yalcin, “Virulence properties of extended spectrum β-lactamase-producing Klebsiella species in meat samples,” Journal of Food Protection, vol. 74, no. 4, pp. 559–564, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Tribuddharat, S. Srifuengfung, and W. Chiangjong, “Preliminary study of randomly-amplified polymorphic DNA analysis for typing extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae,” Journal of the Medical Association of Thailand, vol. 91, no. 4, pp. 527–532, 2008. View at Google Scholar · View at Scopus