Table of Contents
Influenza Research and Treatment
Volume 2014, Article ID 267594, 9 pages
http://dx.doi.org/10.1155/2014/267594
Review Article

Passive Broad-Spectrum Influenza Immunoprophylaxis

1Molecular and Biomedical Sciences, School of Veterinary and Life Sciences, Murdoch University, Perth, WA 6150, Australia
2Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA

Received 4 July 2014; Accepted 10 September 2014; Published 22 September 2014

Academic Editor: John M. Nicholls

Copyright © 2014 Cassandra M. Berry et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. K. Taubenberger and D. M. Morens, “Pandemic influenza—including a risk assessment of H5N1,” Revue Scientifique et Technique, vol. 28, no. 1, pp. 187–202, 2009. View at Google Scholar
  2. R. Salomon and R. G. Webster, “The influenza virus enigma,” Cell, vol. 136, no. 3, pp. 402–410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. G. N. Rogers and J. C. Paulson, “Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin,” Virology, vol. 127, no. 2, pp. 361–373, 1983. View at Publisher · View at Google Scholar · View at Scopus
  4. WHO, http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/.
  5. WHO, 2014, http://www.who.int/influenza/human_animal_interface/influenza_h7n9/en/.
  6. J. K. Taubenberger and D. M. Morens, “1918 Influenza: the mother of all pandemics,” Emerging Infectious Diseases, vol. 12, no. 1, pp. 15–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. CDC, “Swine influenza A (H1N1) infection in two children-Southern California, March-April 2009,” Morbidity Mortality Weekly Report, vol. 58, pp. 400–402, 2009. View at Google Scholar
  8. M. Imai, T. Watanabe, M. Hatta et al., “Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets,” Nature, vol. 486, no. 7403, pp. 420–428, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. J. A. McCullers, “The co-pathogenesis of influenza viruses with bacteria in the lung,” Nature Reviews Microbiology, vol. 12, no. 4, pp. 252–262, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. C. J. Sanders, P. C. Doherty, and P. G. Thomas, “Respiratory epithelial cells in innate immunity to influenza virus infection,” Cell and Tissue Research, vol. 343, no. 1, pp. 13–21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. K. R. Short, E. J. Kroeze, R. A. Fouchier, and T. Kuiken, “Pathogenesis of influenza-induced acute respiratory distress syndrome,” The Lancet Infectious Diseases, vol. 14, no. 1, pp. 57–69, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. F. G. Hayden, R. S. Fritz, M. C. Lobo, W. G. Alvord, W. Strober, and S. E. Straus, “Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense,” The Journal of Clinical Investigation, vol. 101, no. 3, pp. 643–649, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Subbarao, B. R. Murphy, and A. S. Fauci, “Development of effective vaccines against pandemic influenza,” Immunity, vol. 24, no. 1, pp. 5–9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. C.-Y. Wu, Y.-C. Yeh, J.-T. Chan et al., “A VLP vaccine induces broad-spectrum cross-protective antibody immunity against H5N1 and H1N1 subtypes of influenza A virus,” PLoS ONE, vol. 7, no. 8, Article ID e42363, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Yamane, Y. Nakamura, M. Yuki, T. Odagiri, and N. Ishida, “Serological evaluation of an influenza A virus cold-adapted reassortant live vaccine, CR-37 (H1N1), in Japanese adult volunteers,” Journal of Hygiene, vol. 92, no. 2, pp. 231–242, 1984. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Levi and R. Arnon, “Synthetic recombinant influenza vaccine induces efficient long-term immunity and cross-strain protection,” Vaccine, vol. 14, no. 1, pp. 85–92, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Neirynck, T. Deroo, X. Saelens, P. Vanlandschoot, W. M. Jou, and W. Fiers, “A universal influenza A vaccine based on the extracellular domain of the M2 protein,” Nature Medicine, vol. 5, no. 10, pp. 1157–1163, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Takada, S. Matsushita, A. Ninomiya, Y. Kawaoka, and H. Kida, “Intranasal immunization with formalin-inactivated virus vaccine induces a broad spectrum of heterosubtypic immunity against influenza A virus infection in mice,” Vaccine, vol. 21, no. 23, pp. 3212–3218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Corti, A. L. Suguitan Jr., D. Pinna et al., “Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine,” The Journal of Clinical Investigation, vol. 120, no. 5, pp. 1663–1673, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. C. Hurt, “The epidemiology and spread of drug resistant human influenza viruses,” Current Opinion in Virology, vol. 8, pp. 22–29, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. B. R. O'Keefe, D. F. Smee, J. A. Turpin et al., “Potent anti-influenza activity of cyanovirin-N and interactions with viral hemagglutinin,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 8, pp. 2518–2525, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Furuta, B. B. Gowen, K. Takahashi, K. Shiraki, D. F. Smee, and D. L. Barnard, “Favipiravir (T-705), a novel viral RNA polymerase inhibitor,” Antiviral Research, vol. 100, no. 2, pp. 446–454, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Das, “Antivirals targeting influenza a virus,” Journal of Medicinal Chemistry, vol. 55, no. 14, pp. 6263–6277, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. R. W. Y. Chan, M. C. W. Chan, A. C. N. Wong et al., “DAS181 inhibits H5N1 influenza virus infection of human lung tissues,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 9, pp. 3935–3941, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Gong, Y. Jiang, Y. Wang et al., “Recombinant mouse beta-defensin 2 inhibits infection by influenza A virus by blocking its entry,” Archives of Virology, vol. 155, no. 4, pp. 491–498, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y.-F. Lau, L.-H. Tang, and E.-E. Ooi, “A TLR3 ligand that exhibits potent inhibition of influenza virus replication and has strong adjuvant activity has the potential for dual applications in an influenza pandemic,” Vaccine, vol. 27, no. 9, pp. 1354–1364, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. K. A. Shirey, W. Lai, A. J. Scott et al., “The TLR4 antagonist Eritoran protects mice from lethal influenza infection,” Nature, vol. 497, no. 7450, pp. 498–502, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Li, Y. Hu, Y. Jin et al., “Prophylactic, therapeutic and immune enhancement effect of liposome-encapsulated PolyICLC on highly pathogenic H5N1 influenza infection,” The Journal of Gene Medicine, vol. 13, no. 1, pp. 60–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Lin, Q. Liu, N. Berube, S. Detmer, and Y. Zhou, “5′-Triphosphate-short interfering RNA: potent inhibition of influenza a virus infection by gene silencing and RIG-I activation,” Journal of Virology, vol. 86, no. 19, pp. 10359–10369, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. G. J. Kotwal, “Genetic diversity-independent neutralization of pandemic viruses (e.g. HIV), potentially pandemic (e.g. H5N1 strain of influenza) and carcinogenic (e.g. HBV and HCV) viruses and possible agents of bioterrorism (variola) by enveloped virus neutralizing compounds (EVNCs),” Vaccine, vol. 26, no. 24, pp. 3055–3058, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. W.-J. Shin, Y.-K. Kim, K.-H. Lee, and B.-L. Seong, “Evaluation of the antiviral activity of a green tea solution as a hand-wash disinfectant,” Bioscience, Biotechnology and Biochemistry, vol. 76, no. 3, pp. 581–584, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. Q. Li, Z. Zhao, D. Zhou et al., “Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses,” Peptides, vol. 32, no. 7, pp. 1518–1525, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. S. A. Samarajiwa, S. Forster, K. Auchettl, and P. J. Hertzog, “INTERFEROME: the database of interferon regulated genes,” Nucleic Acids Research, vol. 37, supplement 1, pp. D852–D857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. L. A. Durfee and J. M. Huibregtse, “Identification and validation of ISG15 target proteins,” Subcellular Biochemistry, vol. 54, pp. 228–237, 2010. View at Google Scholar
  35. R. H. Silverman and S. R. Weiss, “Viral phosphodiesterases that antagonize double-stranded RNA signaling to RNase L by degrading 2-5A,” Journal of Interferon and Cytokine Research, vol. 34, pp. 455–463, 2014. View at Publisher · View at Google Scholar
  36. D. Rebouillat and A. G. Hovanessian, “The human 2′,5′-oligoadenylate synthetase family: interferon-induced proteins with unique enzymatic properties,” Journal of Interferon and Cytokine Research, vol. 19, no. 4, pp. 295–308, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. O. Haller, G. Kochs, and F. Weber, “Interferon, Mx, and viral countermeasures,” Cytokine and Growth Factor Reviews, vol. 18, no. 5-6, pp. 425–433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Baig and E. N. Fish, “Distinct signature type I interferon responses are determined by the infecting virus and the target cell,” Antiviral Therapy, vol. 13, no. 3, pp. 409–422, 2008. View at Google Scholar · View at Scopus
  39. L. M. Pfeffer, C. A. Dinarello, R. B. Herberman et al., “Biological properties of recombinant α-interferons: 40th anniversary of the discovery of interferons,” Cancer Research, vol. 58, no. 12, pp. 2489–2499, 1998. View at Google Scholar · View at Scopus
  40. G. Kochs, A. García-Sastre, and L. Martínez-Sobrido, “Multiple anti-interferon actions of the influenza A virus NS1 protein,” Journal of Virology, vol. 81, no. 13, pp. 7011–7021, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. Y.-F. Lau, L.-H. Tang, E.-E. Ooi, and K. Subbarao, “Activation of the innate immune system provides broad-spectrum protection against influenza A viruses with pandemic potential in mice,” Virology, vol. 406, no. 1, pp. 80–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. K. S. Tan, F. Olfat, M. C. Phoon et al., “In vivo and in vitro studies on the antiviral activities of viperin against influenza H1N1 virus infection,” Journal of General Virology, vol. 93, no. 6, pp. 1269–1277, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. C. M. James, M. Y. Abdad, J. P. Mansfield et al., “Differential activities of alpha/beta IFN subtypes against influenza virus in vivo and enhancement of specific immune responses in DNA vaccinated mice expressing haemagglutinin and nucleoprotein,” Vaccine, vol. 25, no. 10, pp. 1856–1867, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. J.-K. Yoo, D. P. Baker, and E. N. Fish, “Interferon-β modulates type 1 immunity during influenza virus infection,” Antiviral Research, vol. 88, no. 1, pp. 64–71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. U. R. Malik, D. F. Makower, and S. Wadler, “Interferon-mediated fatigue,” Cancer, vol. 92, no. 6 supplement, pp. 1664–1668, 2001. View at Google Scholar · View at Scopus
  46. R. G. Thorne, L. R. Hanson, T. M. Ross, D. Tung, and W. H. Frey II, “Delivery of interferon-β to the monkey nervous system following intranasal administration,” Neuroscience, vol. 152, no. 3, pp. 785–797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. D. Brideau-Andersen, X. Huang, S.-C. C. Sun et al., “Directed evolution of gene-shuffled IFN-α molecules with activity profiles tailored for treatment of chronic viral diseases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 20, pp. 8269–8274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. A. L. Bennett, D. W. Smith, M. J. Cummins, P. A. Jacoby, J. M. Cummins, and M. W. Beilharz, “Low-dose oral interferon alpha as prophylaxis against viral respiratory illness: a double-blind, parallel controlled trial during an influenza pandemic year,” Influenza and other Respiratory Viruses, vol. 7, no. 5, pp. 854–862, 2013. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Wang, R. Oberley-Deegan, S. Wang et al., “Differentiated human alveolar type II cells secrete antiviral IL-29 (IFN-λ1) in response to influenza a infection,” The Journal of Immunology, vol. 182, no. 3, pp. 1296–1304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Mordstein, E. Neugebauer, V. Ditt et al., “Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections,” Journal of Virology, vol. 84, no. 11, pp. 5670–5677, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. R. K. Durbin, S. V. Kotenko, and J. E. Durbin, “Interferon induction and function at the mucosal surface,” Immunological Reviews, vol. 255, no. 1, pp. 25–39, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. J. S. M. Peiris, C. Y. Cheung, C. Y. H. Leung, and J. M. Nicholls, “Innate immune responses to influenza A H5N1: friend or foe?” Trends in Immunology, vol. 30, no. 12, pp. 574–584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. J. R. Teijaro, K. B. Walsh, S. Cahalan et al., “Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection,” Cell, vol. 146, no. 6, pp. 980–991, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Iwasaki and R. Medzhitov, “Regulation of adaptive immunity by the innate immune system,” Science, vol. 327, no. 5963, pp. 291–295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. E. E. Waffarn and N. Baumgarth, “Protective B cell responses to Flu-No fluke!,” Journal of Immunology, vol. 186, no. 7, pp. 3823–3829, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. S. A. Plotkin, “Correlates of vaccine-induced immunity,” Clinical Infectious Diseases, vol. 47, no. 3, pp. 401–409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Sundararajan, L. Huan, K. A. Richards et al., “Host differences in influenza-specific CD4 T cell and B cell responses are modulated by viral strain and route of immunization,” PLoS ONE, vol. 7, no. 3, Article ID e34377, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. C. C. Goodnow, C. G. Vinuesa, K. L. Randall, F. MacKay, and R. Brink, “Control systems and decision making for antibody production,” Nature Immunology, vol. 11, no. 8, pp. 681–688, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. J. H. Beigel and T. C. Luke, “A study in scarlet-convalescent plasma for severe influenza,” Critical Care Medicine, vol. 40, no. 3, pp. 1027–1028, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Ye, H. Shao, and D. R. Perez, “Passive immune neutralization strategies for prevention and control of influenza A infections,” Immunotherapy, vol. 4, no. 2, pp. 175–186, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Åkerfeldt, S. Geijer, E. Holubars, G. Fuchs, and M. Brundin, “Prophylactic and therapeutic antiviral effect of human gamma globulin,” Biochemical Pharmacology, vol. 21, no. 4, pp. 503–509, 1972. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Ramisse, F.-X. Deramoudt, M. Szatanik et al., “Effective prophylaxis of influenza A virus pneumonia in mice by topical passive immunotherapy with polyvalent human immunoglobulins or F(ab')2 fragments,” Clinical and Experimental Immunology, vol. 111, no. 3, pp. 583–587, 1998. View at Publisher · View at Google Scholar · View at Scopus
  63. T. C. Luke, A. Casadevall, S. J. Watowich, S. L. Hoffman, J. H. Beigel, and T. H. Burgess, “Hark back: passive immunotherapy for influenza and other serious infections,” Critical Care Medicine, vol. 38, no. 4, pp. e66–e73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Zhou, N. Zhong, and Y. Guan, “Treatment with convalescent plasma for influenza A (H5N1) infection,” The New England Journal of Medicine, vol. 357, no. 14, pp. 1450–1451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. I. F. N. Hung, K. K. W. To, C.-K. Lee et al., “Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection,” Clinical Infectious Diseases, vol. 52, no. 4, pp. 447–456, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Rockman, D. Maher, and D. Middleton, “The use of hyperimmune serum for severe influenza infections,” Critical Care Medicine, vol. 40, no. 3, pp. 973–975, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. W. C. Ng, V. Wong, B. Muller, G. Rawlin, and L. E. Brown, “Prevention and treatment of influenza with hyperimmune bovine colostrum antibody,” PLoS One, vol. 5, no. 10, Article ID e13622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. D. C. Ekiert, G. Bhabha, M.-A. Elsliger et al., “Antibody recognition of a highly conserved influenza virus epitope,” Science, vol. 324, no. 5924, pp. 246–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. D. J. Dilillo, G. S. Tan, P. Palese, and J. V. Ravetch, “Broadly neutralizing hemagglutinin stalk-specific antibodies require FcR interactions for protection against influenza virus in vivo,” Nature Medicine, vol. 20, no. 2, pp. 143–151, 2014. View at Publisher · View at Google Scholar · View at Scopus
  70. N. Pica, R. Hai, F. Krammer et al., “Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 7, pp. 2573–2578, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. H. Zhang, L. Wang, R. W. Compans, and B.-Z. Wang, “Universal influenza vaccines, a dream to be realized soon,” Viruses, vol. 6, no. 5, pp. 1974–1991, 2014. View at Publisher · View at Google Scholar · View at Scopus
  72. N. S. Laursen and I. A. Wilson, “Broadly neutralizing antibodies against influenza viruses,” Antiviral Research, vol. 98, no. 3, pp. 476–483, 2013. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Throsby, E. van den Brink, M. Jongeneelen et al., “Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells,” PLoS ONE, vol. 3, no. 12, Article ID e3942, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. R. H. E. Friesen, W. Koudstaal, M. H. Koldijk et al., “New class of monoclonal antibodies against severe influenza: Prophylactic and therapeutic efficacy in ferrets,” PLoS ONE, vol. 5, no. 2, Article ID e9106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Hancock, V. Veguilla, X. Lu et al., “Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus,” The New England Journal of Medicine, vol. 361, no. 20, pp. 1945–1952, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. W. Koudstaal, M. H. Koldijk, J. P. J. Brakenhoff et al., “Pre- and postexposure use of human monoclonal antibody against H5N1 and H1N1 influenza virus in mice: viable alternative to oseltamivir,” Journal of Infectious Diseases, vol. 200, no. 12, pp. 1870–1873, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. Q. Zheng, L. Xia, W. L. Wu et al., “Properties and therapeutic efficacy of broadly reactive chimeric and humanized H5-specific monoclonal antibodies against H5N1 influenza viruses,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 4, pp. 1349–1357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Sakabe, K. Iwatsuki-Horimoto, T. Horimoto et al., “A cross-reactive neutralizing monoclonal antibody protects mice from H5N1 and pandemic (H1N1) 2009 virus infection,” Antiviral Research, vol. 88, no. 3, pp. 249–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. J. S. Shin, H. S. Kim, S. H. Cho, and S. H. Seo, “IgG antibodies mediate protective immunity of inactivated vaccine for highly pathogenic H5N1 influenza viruses in ferrets,” Viral Immunology, vol. 23, no. 3, pp. 321–327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Alisky, “Bovine and human-derived passive immunization could help slow a future avian influenza pandemic,” Medical Hypotheses, vol. 72, no. 1, pp. 74–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. Z. Zhao, F. Yan, Z. Chen et al., “Cross clade prophylactic and therapeutic efficacy of polyvalent equine immunoglobulin F(ab′)2 against highly pathogenic avian influenza H5N1 in mice,” International Immunopharmacology, vol. 11, no. 12, pp. 2000–2006, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. I. Margine, R. Hai, R. A. Albrecht et al., “H3N2 influenza virus infection induces broadly reactive hemagglutinin stalk antibodies in humans and mice,” Journal of Virology, vol. 87, no. 8, pp. 4728–4737, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. I. Margine, F. Krammer, R. Hai et al., “Hemagglutinin stalk-based universal vaccine constructs protect against group 2 influenza A viruses,” Journal of Virology, vol. 87, no. 19, pp. 10435–10446, 2013. View at Publisher · View at Google Scholar · View at Scopus
  84. C. J. Wei, J. C. Boyington, P. M. McTamney et al., “Induction of broadly neutralizing H1N1 influenza antibodies by vaccination,” Science, vol. 329, no. 5995, pp. 1060–1064, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. F. Krammer and P. Palese, “Universal influenza virus vaccines: need for clinical trials,” Nature Immunology, vol. 15, no. 1, pp. 3–5, 2014. View at Publisher · View at Google Scholar · View at Scopus
  86. R. M. Kris, R. A. Yetter, R. Cogliano, R. Ramphal, and P. A. Small, “Passive serum antibody causes temporary recovery from influenza virus infection of the nose, trachea and lung of nude mice,” Immunology, vol. 63, no. 3, pp. 349–353, 1988. View at Google Scholar · View at Scopus
  87. J. P. Wong, L. L. Stadnyk, and E. G. Saravolac, “Enhanced protection against respiratory influenza A infection in mice by liposome-encapsulated antibody,” Immunology, vol. 81, no. 2, pp. 280–284, 1994. View at Google Scholar · View at Scopus
  88. C. Dreffier, F. Ramisse, and C. Dubernet, “Pulmonary administration of IgG loaded liposomes for passive immunoprophylaxy,” International Journal of Pharmaceutics, vol. 254, no. 1, pp. 43–47, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. A. I. Bot, T. E. Tarara, D. J. Smith, S. R. Bot, C. M. Woods, and J. G. Weers, “Novel lipid-based hollow-porous microparticles as a platform for immunoglobulin delivery to the respiratory tract,” Pharmaceutical Research, vol. 17, no. 3, pp. 275–283, 2000. View at Publisher · View at Google Scholar · View at Scopus
  90. G. J. Milne, N. Halder, and J. K. Kelso, “The cost effectiveness of pandemic influenza interventions: a pandemic severity based analysis,” PLoS ONE, vol. 8, no. 4, Article ID e61504, 2013. View at Publisher · View at Google Scholar · View at Scopus
  91. L. E. Richert, A. Rynda-Apple, A. L. Harmsen et al., “CD11c+ cells primed with unrelated antigens facilitate an accelerated immune response to influenza virus in mice,” European Journal of Immunology, vol. 44, no. 2, pp. 397–408, 2014. View at Publisher · View at Google Scholar · View at Scopus
  92. N. Clementi, E. Criscuolo, M. Castelli, N. Mancini, M. Clementi, and R. Burioni, “Influenza B-cells protective epitope characterization: a passkey for the rational design of new broad-range anti-influenza vaccines,” Viruses, vol. 4, no. 11, pp. 3090–3108, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Krammer, R. Hai, M. Yondola et al., “Assessment of influenza virus hemagglutinin stalk-based immunity in ferrets,” Journal of Virology, vol. 88, no. 6, pp. 3432–3442, 2014. View at Publisher · View at Google Scholar · View at Scopus
  94. J. L. Goodman, “Studying “secret serums”—toward safe, effective Ebola treatments,” The New England Journal of Medicine, 2014. View at Publisher · View at Google Scholar
  95. C. Rinaldi, W. J. Penhale, P. A. Stumbles, G. Tay, and C. M. Berry, “Modulation of innate immune responses by influenza-specific ovine polyclonal antibodies used for prophylaxis,” PLoS ONE, vol. 9, no. 2, Article ID e89674, 2014. View at Publisher · View at Google Scholar · View at Scopus
  96. T. M. Uyeki, “Preventing and controlling influenza with available interventions,” The New England Journal of Medicine, vol. 370, no. 9, pp. 789–791, 2014. View at Publisher · View at Google Scholar · View at Scopus
  97. R. G. Webster, “Original antigenic sin in ferrets: the response to sequential infections with influenza viruses,” The Journal of Immunology, vol. 97, no. 2, pp. 177–183, 1966. View at Google Scholar · View at Scopus
  98. J. H. Kim, I. Skountzou, R. Compans, and J. Jacob, “Original antigenic sin responses to influenza viruses,” Journal of Immunology, vol. 183, no. 5, pp. 3294–3301, 2009. View at Publisher · View at Google Scholar · View at Scopus