Table of Contents
ISRN Toxicology
Volume 2011 (2011), Article ID 109092, 7 pages
http://dx.doi.org/10.5402/2011/109092
Research Article

Synergistic Cytotoxic Stress and DNA Damage in Clover (Trifolium repens) Exposed to Heavy Metal Soil from Automobile Refining Shops in Kashmir-Himalaya

Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India

Received 10 November 2011; Accepted 7 December 2011

Academic Editor: K. M. Erikson

Copyright © 2011 Towseef Mohsin Bhat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Baath, “Effects of heavy metals in soil on microbial processes and populations,” Water, Air, and Soil Pollution, vol. 47, no. 3-4, pp. 335–379, 1989. View at Google Scholar · View at Scopus
  2. A. J. M. Baker and R. R. Brooks, “Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry,” Biorecovery, vol. 1, no. 2, pp. 81–126, 1989. View at Google Scholar
  3. B. Knight, F. J. Zhao, S. P. McGrath, and Z. G. Shen, “Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution,” Plant and Soil, vol. 197, no. 1, pp. 71–78, 1997. View at Publisher · View at Google Scholar
  4. W. F. Rogge, M. A. Mazurek, L. M. Hildemann, G. R. Cass, and B. R. T. Simoneit, “Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation,” Atmospheric Environment, vol. 27, no. 8, pp. 1309–1330, 1993. View at Google Scholar
  5. D. R. Cocker, S. D. Shah, K. Johnson, J. W. Miller, and J. M. Norbeck, “Development and application of a mobile laboratory for measuring emissions from diesel engines. 1. Regulated gaseous emissions,” Environmental Science and Technology, vol. 38, no. 7, pp. 2182–2189, 2004. View at Publisher · View at Google Scholar
  6. J. R. Bacon and G. Hudson, “A flexible methodology for the characterisation of soils: a case study of the heavy metal status of a site at Dornach,” Science of the Total Environment, vol. 264, no. 1-2, pp. 153–162, 2001. View at Publisher · View at Google Scholar
  7. W. F. Grant, “The present status of higher plant bioassays for the detection of environmental mutagens,” Mutation Research, vol. 310, no. 2, pp. 175–185, 1999. View at Publisher · View at Google Scholar
  8. S. Knasmüller, E. Gottmann, H. Steinkellner et al., “Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays,” Mutation Research, vol. 420, no. 1–3, pp. 37–48, 1998. View at Publisher · View at Google Scholar
  9. J. R. Peralta, J. L. Gardea-Torresdey, K. J. Tiemann et al., “Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.) grown in solid media,” Bulletin of Environmental Contamination and Toxicology, vol. 66, no. 6, pp. 727–734, 2001. View at Publisher · View at Google Scholar
  10. S. M. Reichman, The Responses of Plants to Metal Toxicity: A Review Focusing on Copper, Manganese and Zinc, Australian Minerals and Energy Environment Foundation, Australia, 2002.
  11. D. Liu, W. Jiang, W. Wang, F. Zhao, and C. Lu, “Effects of lead on root growth, cell division, and nucleolus of Allium cepa,” Environmental Pollution, vol. 86, no. 1, pp. 1–4, 1994. View at Publisher · View at Google Scholar
  12. A. Metwally, V. I. Safronova, A. A. Belimov, and K. J. Dietz, “Genotypic variation of the response to cadmium toxicity in Pisum sativum L,” Journal of Experimental Botany, vol. 56, no. 409, pp. 167–178, 2005. View at Publisher · View at Google Scholar · View at PubMed
  13. L. S. di Toppi and R. Gabbrielli, “Response to cadmium in higher plants,” Environmental and Experimental Botany, vol. 41, no. 2, pp. 105–130, 1999. View at Publisher · View at Google Scholar
  14. T. Marcussen, L. Borgen, and I. Nordal, “Viola hirta (Violaceae) and its relatives in Norway,” Nordic Journal of Botany, vol. 21, no. 1, pp. 5–17, 2001. View at Google Scholar
  15. T. Lindahl, “Instability and decay of the primary structure of DNA,” Nature, vol. 362, no. 6422, pp. 709–715, 1993. View at Publisher · View at Google Scholar · View at PubMed
  16. P. E. Tolbert, C. M. Shy, and J. W. Allen, “Micronuclei and other nuclear anomalies in buccal smears: Methods development,” Mutation Research, vol. 271, no. 1, pp. 69–77, 1992. View at Publisher · View at Google Scholar
  17. T. Çavaş and S. Könen, “Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay,” Mutagenesis, vol. 22, no. 4, pp. 263–266, 2007. View at Publisher · View at Google Scholar · View at PubMed
  18. Y. Zhu, J. Wang, Y. Bai, and R. Zhang, “Cadmium, chromium, and copper induce polychromatocyte micronuclei in carp (Cyprinus carpio L.),” Bulletin of Environmental Contamination and Toxicology, vol. 72, no. 1, pp. 78–86, 2004. View at Publisher · View at Google Scholar · View at PubMed
  19. P. K. Padmavathiamma and L. Y. Li, “Phytoremediation technology: hyper-accumulation metals in plants,” Water, Air, and Soil Pollution, vol. 184, no. 1–4, pp. 105–126, 2007. View at Publisher · View at Google Scholar
  20. W. F. Grant and E. T. Owens, “Chromosome aberration assays in Pisum for the study of environmental mutagens,” Mutation Research, vol. 488, no. 2, pp. 93–118, 2006. View at Publisher · View at Google Scholar
  21. D. M. Leme and M. A. Marin-Morales, “Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water-A case study,” Mutation Research, vol. 650, no. 1, pp. 80–86, 2008. View at Publisher · View at Google Scholar · View at PubMed
  22. A. Mughal, A. Vikram, P. Ramarao, and G. B. Jena, “Micronucleus and comet assay in the peripheral blood of juvenile rat: establishment of assay feasibility, time of sampling and the induction of DNA damage,” Mutation Research, vol. 700, no. 1-2, pp. 86–94, 2010. View at Publisher · View at Google Scholar · View at PubMed
  23. R. M. Powell, R. W. Puls, D. W. Blowes et al., “Permeable Reactive Barrier Technologies for Contaminant Remediation,” Tech. Rep. EPA/600/R-98/125, US Environmental Protection Agency, Washington, DC, USA, 1998. View at Google Scholar
  24. L. R. Brooks, T. J. Hughes, L. D. Claxton, B. Austern, R. Brenner, and F. Kremer, “Bioassay-directed fractionation and chemical identification of mutagens in bioremediated soils,” Environmental Health Perspectives, vol. 106, supplement 6, pp. 1435–1440, 1998. View at Google Scholar
  25. S. Monarca, D. Feretti, I. Zerbini et al., “Soil contamination detected using bacterial and plant mutagenicity tests and chemical analyses,” Environmental Research, vol. 88, no. 1, pp. 64–69, 2002. View at Publisher · View at Google Scholar · View at PubMed
  26. G. L. Cabrera and D. M. G. Rodriguez, “Genotoxicity of soil from farmland irrigated with wastewater using three plant bioassays,” Mutation Research, vol. 426, no. 2, pp. 211–214, 1999. View at Publisher · View at Google Scholar
  27. H. Wang, “Clastogenicity of chromium contaminated soil samples evaluated by Vicia root-micronucleus assay,” Mutation Research, vol. 426, no. 2, pp. 147–149, 1999. View at Publisher · View at Google Scholar
  28. S. Cotelle, J. F. Masfaraud, and J. F. Férard, “Assessment of the genotoxicity of contaminated soil with the Allium/Vicia-micronucleus and the Tradescantia-micronucleus assays,” Mutation Research, vol. 426, no. 2, pp. 167–171, 1999. View at Publisher · View at Google Scholar
  29. W. Jiang, D. Liu, and W. Hou, “Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.),” Bioresource Technology, vol. 76, no. 1, pp. 9–13, 2001. View at Publisher · View at Google Scholar