Abstract

We study the problem to approximate a data set which are affected in a such way that they present us as a band in the plane. We introduce a deviation measure, and we research the asymptotic behavior of the best approximants when the band shrink in some sense.

1. Introduction

In some situations, we find us with the problem to approximate a given function of physical origin which is contaminated by different causes. For example, it occurs when we receive a signal, and we observe at the screen of an electronic oscilloscope a band produced by noise or other factors. Here, a criterion of selecting is necessary in order to approximate to that band. More precisely, we must choose a measure of deviation from one band to a given approximant class. A way could be to approximate a segment value multivalued function using the Hausdorff metric in the plane (see [1]); another could be to consider the best simultaneous approximation to the set of every functions whose graphics live in the band determined by them (see [2โ€“4]). In this paper, we give an alternative deviation measure, and we establish a relation with the best simultaneous approximation.

Let 1โ‰ค๐‘<โˆž, and ๐นโˆถ[๐‘Ž,๐‘]โ†’2โ„, be a multivalued function with ๐น(๐‘ฅ) a Lebesgue measurable set for all ๐‘ฅโˆˆ[๐‘Ž,๐‘]. Given an approximant class ๐’ฎ, we consider the following function as measure of deviation of ๐น to ๐‘„โˆˆ๐’ฎโˆถฮฆ[๐‘Ž,๐‘]๎‚ต๎€œ(๐น,๐‘„)=๐‘๐‘Ž๎€œ๐น(๐‘ฅ)|๐‘ฆโˆ’๐‘„(๐‘ฅ)|๐‘๎‚ถ๐‘‘๐‘ฆ๐‘‘๐‘ฅ1/๐‘.(1.1)

Let ๐ทโˆถ={(๐‘ฅ,๐‘ฆ)โˆถ๐‘ฅโˆˆ[๐‘Ž,๐‘],๐‘ฆโˆˆ๐น(๐‘ฅ)}. It is easy to see that (1.1) is a special case to approximate a function ๐ผ from a given class ๐’ž with a norm |โ€–โ‹…โ€–| over the space of functions defined on ๐ท. In fact, if ๐’ž={๐ป๐‘„โˆถ๐‘„โˆˆ๐’ฎ}, where ๐ป๐‘„(๐‘ฅ,๐‘ฆ)=๐‘„(๐‘ฅ), then ฮฆ[๐‘Ž,๐‘](๐น,๐‘„)=|โ€–๐ผโˆ’๐ป๐‘„โ€–|, where ๐ผ(๐‘ฅ,๐‘ฆ)=๐‘ฆ and||||=๎‚ต๎€โ€–๐บโ€–๐ท|๐บ(๐‘ฅ,๐‘ฆ)|๐‘๎‚ถ๐‘‘๐‘ฆ๐‘‘๐‘ฅ1/๐‘.(1.2)

As usual, if 1โ‰ค๐‘žโ‰คโˆž, ๐ดโŠ‚[๐‘Ž,๐‘] is a Lebesgue measurable set and ๐‘ค is a nonnegative integrable function on ๐ด, then ๐ฟ๐‘ž๐‘ค(๐ด) denotes the space of Lebesgue measurable functions ๐‘“ satisfying โ€–๐‘“โ€–๐‘ž,๐‘ค,๐ด๎‚ต๎€œโˆถ=๐ด||||๐‘“(๐‘ฅ)๐‘ž๎‚ถ๐‘ค(๐‘ฅ)๐‘‘๐‘ฅ1/๐‘ž<โˆž,(1.3) with the usual understanding if ๐‘ž=โˆž. If ๐‘ค=1, we write ๐ฟ๐‘ž(๐ด) and โ€–๐‘“โ€–๐‘ž,๐ด for ๐ฟ๐‘ž๐‘ค(๐ด) and โ€–๐‘“โ€–๐‘ž,๐‘ค,๐ด, respectively.

Given two functions ๐‘“,๐‘”โˆถ[๐‘Ž,๐‘]โ†’โ„, ๐‘“โ‰ค๐‘”, we only consider in this paper the multivalued function ๐น defined by ๐น(๐‘ฅ)=[๐‘“(๐‘ฅ),๐‘”(๐‘ฅ)] for each ๐‘ฅโˆˆ[๐‘Ž,๐‘].

Our main goal is to study the asymptotic behavior of those ๐‘„ which minimize (1.1)when the band shrinks in some sense, and the approximant class ๐’ฎ is a finite dimensional linear subspace. In this case, ๐’ž is a finite dimensional linear subspace, and the existence of such a ๐‘„ is well known (see [5]).

We consider that the band shrinks to a curve in two situations: (i)The functions ๐‘“ and ๐‘” are replaced by a family of functions ๐‘“๐œ–, ๐‘”๐œ–, where ๐‘“๐œ–, ๐‘”๐œ– converge to a function โ„Ž, as ๐œ– tends to 0. That is, the band shrinks vertically.(ii)The interval [๐‘Ž,๐‘] is substituted by [๐‘ฅ0โˆ’๐œ–,๐‘ฅ0+๐œ–], where ๐œ– tends to 0; that is, the band shrinks horizontally.

If there exists the limit of ๐‘„ minimizing (1.1) when the band shrinks to a curve, as such, it provides useful qualitative and approximation analytic information concerning the approximants on small bands, which is difficult to obtain from a strictly numerical treatment. The existence of the limit of ๐‘„ is close to the best local approximation problem (see [6โ€“8]).

In Section 2, we prove that if the band shrinks vertically to a given function, then the set of closure points of ๐‘„ is contained in the set of best approximants to that function, with a suitable seminorm. Moreover, we see that the limit of ๐‘„ exists when ๐‘>1.

In Section 3, we prove that if the band shrinks horizontally, the limit of ๐‘„ is the mean of the Taylor polynomials of ๐‘“ and ๐‘” at ๐‘ฅ0. We also show that this approximation problem is related with the subject of best simultaneous local approximation which was studied in [8].

We assume conditions about the functions ๐‘“ and ๐‘” in order to be (1.1) finite for all ๐‘„โˆˆ๐’ฎ. Henceforward, ๐‘“,๐‘”โˆˆ๐ฟ๐‘ž([๐‘Ž,๐‘]),๐’ฎโŠ‚๐ฟ๐‘ž([๐‘Ž,๐‘]), and ๐‘”โˆ’๐‘“โˆˆ๐ฟ๐‘ž/(๐‘žโˆ’๐‘)([๐‘Ž,๐‘]),๐‘โ‰ค๐‘ž. In this case, using Hรถlder's inequality, we haveฮฆ๐‘[]๐‘Ž,๐‘๎€œ(๐น,๐‘„)โ‰ค๐‘๐‘Ž๎€ฝ||||,||||๎€พmax๐‘“(๐‘ฅ)โˆ’๐‘„(๐‘ฅ)๐‘”(๐‘ฅ)โˆ’๐‘„(๐‘ฅ)๐‘โ‰คโ€–โ€–๎€ฝ||||,||||๎€พโ€–โ€–(๐‘”(๐‘ฅ)โˆ’๐‘“(๐‘ฅ))๐‘‘๐‘ฅmax๐‘“โˆ’๐‘„๐‘”โˆ’๐‘„๐‘๐‘ž,[๐‘Ž,๐‘]โ€–๐‘”โˆ’๐‘“โ€–๐‘ž/(๐‘žโˆ’๐‘),[๐‘Ž,๐‘]<โˆž,(1.4) for all ๐‘„โˆˆ๐’ฎ. If ๐‘žโ‰ฅ๐‘+1, the condition ๐‘”โˆ’๐‘“โˆˆ๐ฟ๐‘ž/(๐‘žโˆ’๐‘)([๐‘Ž,๐‘]) is automatically satisfied.

2. The Band Shrinks Vertically

Let ๐‘” be a measurable nonnegative function in ๐ฟ๐‘ž([๐‘Ž,๐‘]), ๐‘โ‰ค๐‘ž, and {๐‘“๐œ–}, {๐‘”๐œ–}, ๐œ–>0, two net of measurable functions such that |๐‘“๐œ–|,|๐‘”๐œ–|โ‰ค๐‘”, a.e. on [๐‘Ž,๐‘]. We write ๐น๐œ–(๐‘ฅ)=[๐‘“๐œ–(๐‘ฅ),๐‘”๐œ–(๐‘ฅ)], ๐‘ฅโˆˆ[๐‘Ž,๐‘]. Given ๐’ฎโŠ‚๐ฟ๐‘ž([๐‘Ž,๐‘]) a finite dimensional lineal subspace, let ๐‘„๐œ–โˆˆ๐’ฎ which minimizes ฮฆ[๐‘Ž,๐‘](๐น๐œ–,๐‘„), ๐‘„โˆˆ๐’ฎ.

Theorem 2.1. Assume that there are two functions ๐‘Š(๐œ–)โˆถ(0,โˆž)โ†’(0,โˆž) and โ„Žโˆˆ๐ฟ๐‘ž/(๐‘žโˆ’๐‘)([๐‘Ž,๐‘]) such that almost everywhere on [๐‘Ž,๐‘]๐‘”๐œ–โˆ’๐‘“๐œ–๐‘Š(๐œ–)โ‰คโ„Ž,(2.1)lim๐œ–โ†’0๐‘”๐œ–โˆ’๐‘“๐œ–๐‘Š(๐œ–)=๐‘ค,(2.2) with |{๐‘ค>0}|>0. If ๐‘“๐œ– and ๐‘”๐œ– converge to ๐‘“ almost everywhere on [๐‘Ž,๐‘], then the set of closure points of ๐‘„๐œ– is a nonempty set, and it is contained in the set of best approximants to ๐‘“ from ๐’ฎ with the seminorm โ€–โ‹…โ€–๐‘,๐‘ค,[๐‘Ž,๐‘]. In particular, if ๐‘>1, the net ๐‘„๐œ– converges to the unique best approximant to ๐‘“, as ๐œ–โ†’0.

Proof. For ๐œ–>0, we denote ๐‘คโˆ—๐œ–=๐‘ค๐œ–/๐‘Š(๐œ–), where ๐‘ค๐œ–=๐‘”๐œ–โˆ’๐‘“๐œ–. Let ๐ฝ๐‘„,๐œ–๎€œ(๐‘ฅ)โˆถ=๐‘”๐œ–๐‘“(๐‘ฅ)๐œ–(๐‘ฅ)||||๐‘ฆโˆ’๐‘„(๐‘ฅ)๐‘[]๐‘‘๐‘ฆ,๐‘ฅโˆˆ๐‘Ž,๐‘,๐‘„โˆˆ๐’ฎ.(2.3) Let ๐‘„โˆˆ๐’ฎ. By integral mean value theorem, for each ๐‘ฅโˆˆ[๐‘Ž,๐‘], there exists ๐›ผ๐œ–(๐‘ฅ),๐œ‰๐œ–๎€บ๐‘“(๐‘ฅ)โˆˆ๐œ–(๐‘ฅ),๐‘”๐œ–๎€ป(๐‘ฅ),(2.4) such that ๐ฝ๐‘„๐œ–,๐œ–=|๐›ผ๐œ–โˆ’๐‘„๐œ–|๐‘๐‘ค๐œ– and ๐ฝ๐‘„,๐œ–=|๐œ‰๐œ–โˆ’๐‘„|๐‘๐‘ค๐œ–. Now, the Fubbini Theorem implies that ๐ฝ๐‘„๐œ–,๐œ– and ๐ฝ๐‘„,๐œ– are measurable functions on [๐‘Ž,b], and hence, ๐›ผ๐œ– and ๐œ‰๐œ– are measurable functions on [๐‘Ž,๐‘]. Consequently, ๐›ผ๐œ–, ๐œ‰๐œ–โˆˆ๐ฟ๐‘ž([๐‘Ž,๐‘]), because |๐›ผ๐œ–|,|๐œ‰๐œ–|โ‰ค๐‘”, a.e. on [๐‘Ž,๐‘].
On the other hand, โ€–โ€–๐‘“โˆ’๐‘„๐œ–โ€–โ€–๐‘,๐‘ค๐œ–,[๐‘Ž,๐‘]โˆ’โ€–โ€–๐›ผ๐œ–โ€–โ€–โˆ’๐‘“๐‘,๐‘ค๐œ–,[๐‘Ž,๐‘]โ‰คโ€–โ€–๐›ผ๐œ–โˆ’๐‘„๐œ–โ€–โ€–๐‘,๐‘ค๐œ–,[๐‘Ž,๐‘]=ฮฆ[๐‘Ž,๐‘]๎€ท๐น๐œ–,๐‘„๐œ–๎€ธโ‰คฮฆ[๐‘Ž,๐‘]๎€ท๐น๐œ–๎€ธ=โ€–โ€–๐œ‰,๐‘„๐œ–โ€–โ€–โˆ’๐‘„๐‘,๐‘ค๐œ–,[๐‘Ž,๐‘].(2.5) In consequence, we get โ€–โ€–๐‘“โˆ’๐‘„๐œ–โ€–โ€–๐‘,๐‘คโˆ—๐œ–,[๐‘Ž,๐‘]โ‰คโ€–โ€–๐›ผ๐œ–โ€–โ€–โˆ’๐‘“๐‘,๐‘คโˆ—๐œ–,[๐‘Ž,๐‘]+โ€–โ€–๐œ‰๐œ–โ€–โ€–โˆ’๐‘„๐‘,๐‘คโˆ—๐œ–,[๐‘Ž,๐‘].(2.6) As |๐‘“|โ‰ค๐‘” a.e. on [๐‘Ž,๐‘], from (2.1) and the Hรถlder inequality, we have |๐›ผ๐œ–โˆ’๐‘“|๐‘๐‘คโˆ—๐œ–โ‰ค(2๐‘”)๐‘โ„Žโˆˆ๐ฟ1([]๐‘Ž,๐‘),|๐œ‰๐œ–โˆ’๐‘„|๐‘๐‘คโˆ—๐œ–||๐‘„||)โ‰ค(๐‘”+๐‘โ„Žโˆˆ๐ฟ1([]๐‘Ž,๐‘).(2.7) From (2.2) and the Lebesgue Dominated Convergence Theorem, it follows that lim๐œ–โ†’0๎‚€โ€–โ€–๐›ผ๐œ–โ€–โ€–โˆ’๐‘“๐‘,๐‘คโˆ—๐œ–,[๐‘Ž,๐‘]+โ€–โ€–๐œ‰๐œ–โ€–โ€–โˆ’๐‘„๐‘,๐‘คโˆ—๐œ–,[๐‘Ž,๐‘]๎‚=โ€–๐‘“โˆ’๐‘„โ€–๐‘,๐‘ค,[๐‘Ž,๐‘].(2.8) By hypothesis, there is ๐‘˜>0 satisfying |{๐‘ค>๐‘˜}|>0. By the Egoroff Theorem (see [9]), there exists a set ๐ดโŠ‚{๐‘ค>๐‘˜}, |๐ด|>0, where we have that ๐‘คโˆ—๐œ– uniformly converges to ๐‘ค on ๐ด. So, we can choose a positive constant ๐œ–0 such that for all ๐‘ฅโˆˆ๐ด and all 0<๐œ–<๐œ–0, ๐‘คโˆ—๐œ–(๐‘ฅ)โ‰ฅ๐‘˜/2. Hence, โ€–โ€–๐‘“โˆ’๐‘„๐œ–โ€–โ€–๐‘,๐ดโ‰ค๎‚€๐‘˜2๎‚โˆ’1/๐‘โ€–โ€–๐‘“โˆ’๐‘„๐œ–โ€–โ€–๐‘,๐‘คโˆ—๐œ–,[๐‘Ž,๐‘],0<๐œ–<๐œ–0.(2.9) According to (2.6)โ€“(2.9), {๐‘„๐œ–} is a uniformly bounded net. Then, {๐‘„๐œ–} have a subsequence that we again denote by {๐‘„๐œ–} converging to ๐‘‡โˆˆ๐’ฎ. Again, the Lebesgue dominated convergence theorem implies lim๐œ–โ†’0โ€–๐‘“โˆ’๐‘„๐œ–โ€–๐‘,๐‘คโˆ—๐œ–,[๐‘Ž,๐‘]=โ€–๐‘“โˆ’๐‘‡โ€–๐‘,๐‘ค,[๐‘Ž,๐‘]. Finally, from (2.6) and (2.8), we conclude that โ€–๐‘“โˆ’๐‘‡โ€–๐‘,๐‘ค,[๐‘Ž,๐‘]โ‰คโ€–๐‘“โˆ’๐‘„โ€–๐‘,๐‘ค,[๐‘Ž,๐‘].(2.10) As ๐‘„โˆˆ๐’ฎ is arbitrary, the theorem immediately follows.

Suppose that ๐‘>1. If we have two functions ๐‘Š๐‘–โˆถ(0,โˆž)โ†’(0,โˆž) and ๐‘ค๐‘–, ๐‘–=1,2, fulfilling the hypothesis of Theorem 2.1, we conclude that ๐‘„๐œ– converges to the best approximant to ๐‘“ from ๐’ฎ when we consider โ€–โ‹…โ€–๐‘,๐‘ค1,[๐‘Ž,๐‘] and โ€–โ‹…โ€–๐‘,๐‘ค2,[๐‘Ž,๐‘], respectively. The next lemma shows that it is not surprising, because these norms differing by a constant.

Lemma 2.2. Let (ฮฉ,ฮฃ,๐œ‡) be a finite measure space. Let ๐‘ค๐œ–โˆถฮฉโ†’โ„,๐œ–>0 be a net of nonnegative measurable functions. Assume that there are two functions ๐‘Š๐‘–โˆถ(0,โˆž)โ†’(0,โˆž), ๐‘–=1,2 such that almost everywhere on ฮฉlim๐œ–โ†’0๐‘ค๐œ–(๐‘ฅ)๐‘Š๐‘–(๐œ–)=๐‘ค๐‘–(๐‘ฅ)(2.11) is finite. If ๐ด๐‘–โˆถ={๐‘ฅโˆˆฮฉโˆถ๐‘ค๐‘–(๐‘ฅ)>0} and ๐œ‡(๐ด๐‘–)>0, ๐‘–=1,2, then there exists ๐‘˜>0 satisfying ๐‘ค1=๐‘˜๐‘ค2, a.e. on ฮฉ.

Proof. We denote by ๐ผ๐‘–, ๐‘–=1,2, the subsets of ฮฉ, where ๐‘ค๐‘– is finite, and we write ๐พ=๐ผ1โˆฉ๐ผ2. Clearly, ๐œ‡(๐พ)=๐œ‡(ฮฉ). Let ๐ฝ๐‘–=๐ด๐‘–โˆฉ๐พ.
If ๐œ‡(๐ฝ1โˆฉ๐ฝ2)=0, then ๐œ‡(๐ฝ1โˆ’๐ฝ2)=๐œ‡(๐ด1)>0 and ๐œ‡(๐ฝ2โˆ’๐ฝ1)=๐œ‡(๐ด2)>0. We take ๐‘ฅ1โˆˆ๐ฝ1โˆ’๐ฝ2 and ๐‘ฅ2โˆˆ๐ฝ2โˆ’๐ฝ1. The equality ๐‘ค๐œ–(๐‘ฅ)๐‘Š2=๐‘ค(๐œ–)๐œ–(๐‘ฅ)๐‘Š1๐‘Š(๐œ–)1(๐œ–)๐‘Š2(๐œ–),๐‘ฅโˆˆฮฉ(2.12) implies that ๐‘Š1(๐œ–)/๐‘Š2(๐œ–) tends to zero if ๐‘ฅ=๐‘ฅ1, and it tends to infinite if ๐‘ฅ=๐‘ฅ2, a contradiction. So, we get ๐œ‡(๐ฝ1โˆฉ๐ฝ2)>0.
For all ๐‘ฅโˆˆ๐ฝ1โˆฉ๐ฝ2, we have 0<๐‘˜โˆถ=lim๐œ–โ†’0๐‘Š1(๐œ–)๐‘Š2(=๐‘ค๐œ–)2(๐‘ฅ)๐‘ค1(.๐‘ฅ)(2.13) Next, we prove that ๐œ‡(๐ฝ1โˆ’๐ฝ2)=๐œ‡(๐ฝ2โˆ’๐ฝ1)=0. If ๐œ‡(๐ฝ1โˆ’๐ฝ2)>0 the above argument implies that ๐‘˜=0, and if ๐œ‡(๐ฝ2โˆ’๐ฝ1)>0, we obtain ๐‘˜=โˆž. In either case, it contradicts (2.13). Therefore, ๐œ‡(๐ฝ1โˆฉ๐ฝ2)=๐œ‡(๐ฝ1โˆช๐ฝ2)=๐œ‡(๐ด1)=๐œ‡(๐ด2) and ๐‘ค2(๐‘ฅ)=๐‘˜๐‘ค1(๐‘ฅ),a.e.on๐ด1โˆช๐ด2.(2.14) It immediately follows that (2.14) holds a.e. on ฮฉ.

We also observe in the next example that (2.2) in Theorem 2.1 is essential.

Example 2.3. Let ๐‘Ž=0, ๐‘=1, and ๐‘=2. We consider ๐’ฎ the space of constant functions, ๐‘“๐‘š(๐‘ฅ)=๐‘ฅ,๐‘”๐‘š=โŽงโŽชโŽจโŽชโŽฉ1๐‘ฅ+๐‘š๐‘ฅ,if๐‘šiseven,๐‘ฅ+๐‘š,if๐‘šisodd.(2.15) Here, ๐‘š(๐‘”๐‘šโˆ’๐‘“๐‘š), is equal to 1 if ๐‘š is even, and it is equal ๐‘ฅ in otherwise. Applying Theorem 2.1, we get ๐‘„2๐‘šโ†’1/2 and ๐‘„2๐‘šโˆ’1โ†’2/3, as ๐‘šโ†’โˆž.

3. The Band Shrinks Horizontally

Let ๐‘ฅ0โˆˆ[๐‘Ž,๐‘] and ๐ผ๐œ–โˆถ=[๐‘ฅ0โˆ’๐œ–,๐‘ฅ0+๐œ–]โŠ‚[๐‘Ž,๐‘], ๐œ–>0. In this section, we assume that ๐‘“ and ๐‘” have continuous derivatives up to order ๐‘› at ๐‘ฅ0. From now on, ๐’ฎ=ฮ ๐‘› is the space of algebraic polynomials of degree at most ๐‘›, and ๐‘„๐œ– denotes an element of ฮ ๐‘› that minimizes ฮฆ๐ผ๐œ–(๐น,๐‘„), ๐‘„โˆˆฮ ๐‘›.

We recall (see [10, 11]) the Newton divided difference formula for the interpolation polynomial of a function โ„Ž of degree ๐‘› at ๐‘ฅ1โ‰ค๐‘ฅ2โ‰คโ‹ฏโ‰ค๐‘ฅn+1,๐‘ƒ๎€ท๐‘ฅ(๐‘ฅ)=โ„Ž1๎€ธ+๎€ท๐‘ฅโˆ’๐‘ฅ1๎€ธโ„Ž๎€บ๐‘ฅ1,๐‘ฅ2๎€ป๎€ท+โ‹ฏ+๐‘ฅโˆ’๐‘ฅ1๎€ธโ‹ฏ๎€ท๐‘ฅโˆ’๐‘ฅ๐‘›๎€ธโ„Ž๎€บ๐‘ฅ1,โ€ฆ,๐‘ฅ๐‘›+1๎€ป.(3.1) Here, โ„Ž[๐‘ฅ1,โ€ฆ,๐‘ฅ๐‘š+1] denotes the ๐‘š-th order Newton divided difference. If โ„Ž has continuous derivatives up to order ๐‘š, on an interval [๐‘Ž,๐‘] containing to ๐‘ฅ1,โ€ฆ,๐‘ฅ๐‘š+1, then the ๐‘š-th divided difference can be expressed asโ„Ž๎€บ๐‘ฅ1,โ€ฆ,๐‘ฅ๐‘š+1๎€ป=โ„Ž(๐‘š)(๐œ‰),๐‘š!(3.2) for some ๐œ‰ in the interval [๐‘ฅ1,๐‘ฅ๐‘š+1]. It is well known that the ๐‘š-th divided difference is a continuous function as function of their arguments ๐‘ฅ1,โ€ฆ,๐‘ฅ๐‘š+1.

For simplicity of notation, we write ๐‘‡(๐‘“) and ๐‘‡(๐‘”) the Taylor polynomials of ๐‘“ and ๐‘” at ๐‘ฅ0 of order ๐‘›, respectively.

Lemma 3.1. Let ๐‘žโ‰ฅ0, and let ๐‘“๐‘–โˆถ[๐‘Ž,๐‘]โ†’โ„, 1โ‰ค๐‘–โ‰ค3 be continuous functions with ๐‘“1โ‰ค๐‘“2. If ๎€œโ„Ž(๐‘ฅ)=๐‘“2๐‘“(๐‘ฅ)1(๐‘ฅ)||๐‘ฆโˆ’๐‘“3||(๐‘ฅ)๐‘ž๎€ทsgn๐‘ฆโˆ’๐‘“3๎€ธ(๐‘ฅ)๐‘‘๐‘ฆ,๐‘Žโ‰ค๐‘ฅโ‰ค๐‘,(3.3) then โ„Ž is a continuous function.

Proof. If ๐‘ž>0, the continuity of โ„Ž follows from the continuity of ๐‘“๐‘–, 1โ‰ค๐‘–โ‰ค3 and the uniform continuity of ๐‘ก๐‘žsgn(๐‘ก) on compact sets. If ๐‘ž=0, we have โŽงโŽชโŽจโŽชโŽฉ๐‘“โ„Ž(๐‘ฅ)=1(๐‘ฅ)โˆ’๐‘“2(๐‘ฅ),if๐‘“3(๐‘ฅ)โ‰ฅ๐‘“2๐‘“(๐‘ฅ),2(๐‘ฅ)โˆ’๐‘“1(๐‘ฅ),if๐‘“3(๐‘ฅ)โ‰ค๐‘“1๐‘“(๐‘ฅ),1(๐‘ฅ)+๐‘“2(๐‘ฅ)โˆ’2๐‘“3(๐‘ฅ),if๐‘“1(๐‘ฅ)โ‰ค๐‘“3(๐‘ฅ)โ‰ค๐‘“2(๐‘ฅ).(3.4) Thus, the continuity of โ„Ž is immediate.

Theorem 3.2. If ๐‘โ‰ฅ1, then any net ๐‘„๐œ– converges to (๐‘‡(๐‘“)+๐‘‡(๐‘”))/2, as ๐œ–โ†’0.

Proof. It is easy to see that ๐‘„๐œ– is characterized by ๎€œ๐ผ๐œ–โ„Ž(๐‘ฅ)๐‘„(๐‘ฅ)๐‘‘๐‘ฅ=0,๐‘„โˆˆฮ ๐‘›,(3.5) where ๎€œโ„Ž(๐‘ฅ)=๐‘”(๐‘ฅ)๐‘“(๐‘ฅ)||๐‘ฆโˆ’๐‘„๐œ–||(๐‘ฅ)๐‘โˆ’1๎€ทsgn๐‘ฆโˆ’๐‘„๐œ–๎€ธ(๐‘ฅ)๐‘‘๐‘ฆ.(3.6) By Lemma 3.1, โ„Ž is continuous. Therefore, โ„Ž interpolates to zero in at least ๐‘›+1 different points of the interval ๐ผ๐œ–, say ๐‘ฅ1<๐‘ฅ2<โ‹ฏ<๐‘ฅ๐‘›+1. In fact, if โ„Ž has ๐‘š different zeros, ๐‘šโ‰ค๐‘›, we can find an element ๐‘„โˆˆฮ ๐‘› such that โ„Ž(๐‘ฅ)๐‘„(๐‘ฅ)>0 for all ๐‘ฅโ‰ ๐‘ฅ๐‘–, 1โ‰ค๐‘–โ‰ค๐‘š. It contradicts (3.5). So, ๎€œ๐‘”(๐‘ฅ๐‘–)๐‘“(๐‘ฅ๐‘–)|๐‘ฆโˆ’๐‘„๐œ–๎€ท๐‘ฅ๐‘–๎€ธ|๐‘โˆ’1๎€ทsgn๐‘ฆโˆ’๐‘„๐œ–๎€ท๐‘ฅ๐‘–๎€ธ๎€ธ๐‘‘๐‘ฆ=0,1โ‰ค๐‘–โ‰ค๐‘›+1.(3.7) It follows that ๐‘„๐œ–(๐‘ฅ๐‘–) is a best constant approximant to the identity function with norm โ€–โ‹…โ€–๐‘,[๐‘“(๐‘ฅ๐‘–),๐‘”(๐‘ฅ๐‘–)], 1โ‰ค๐‘–โ‰ค๐‘›+1. A straightforward computation shows that ๐‘„๐œ–(๐‘ฅ๐‘–)=(๐‘“(๐‘ฅ๐‘–)+๐‘”(๐‘ฅ๐‘–))/2, 1โ‰ค๐‘–โ‰ค๐‘›+1; that is, ๐‘„๐œ– interpolates to the function (๐‘“+๐‘”)/2 at ๐‘ฅ๐‘–, 1โ‰ค๐‘–โ‰ค๐‘›+1. From (3.1) and (3.2), it follows that ๐‘„๐œ–๎€ท๐‘ฅ(๐‘ฅ)=โ„Ž1๎€ธ+๎€ท๐‘ฅโˆ’๐‘ฅ1๎€ธโ„Ž(1)๎€ท๐œ‰1๎€ธ๎€ท+โ‹ฏ+๐‘ฅโˆ’๐‘ฅ1๎€ธโ‹ฏ๎€ท๐‘ฅโˆ’๐‘ฅ๐‘›๎€ธโ„Ž(๐‘›)๎€ท๐œ‰๐‘›๎€ธ,๐‘›!(3.8) where โ„Ž=(๐‘“+๐‘”)/2, ๐œ‰๐‘–โˆˆ๐ผ๐œ–, 1โ‰ค๐‘–โ‰ค๐‘›. Taking limit for ๐œ–โ†’0 in (3.8) and using the continuity of the derivatives of the functions ๐‘“ and ๐‘”, we get the theorem.

Corollary 3.3. Let ๐‘โ‰ฅ1. Suppose that ๐‘“ and ๐‘” have continuous derivatives up to order ๐‘›+1 at ๐‘ฅ0 and ๐‘“(๐‘ฅ0)<๐‘”(๐‘ฅ0). Then, for sufficiently small ๐œ–, ๐‘„๐œ– is the best ๐‘™๐‘+1-simultaneous approximant in ๐ฟ๐‘+1(๐ผ๐œ–); that is, ๐‘„๐œ– minimizes ๎‚€โ€–๐‘“โˆ’๐‘„โ€–๐‘+1๐‘+1,๐ผ๐œ–+โ€–๐‘”โˆ’๐‘„โ€–๐‘+1๐‘+1,๐ผ๐œ–๎‚1/(๐‘+1),๐‘„โˆˆฮ ๐‘›.(3.9)

Proof. By hypothesis, there is ๐œ–0>0 such that ๐‘“<๐‘” on ๐ผ๐œ–0. Let ๐‘ƒ๐œ– be the best ๐‘™๐‘+1-simultaneous approximant to ๐‘“ and ๐‘” in ๐ฟ๐‘+1(๐ผ๐œ–). From Theorem 3.2, and [8, Theoremโ€‰โ€‰3.4], there exists 0<๐œ–1<๐œ–0 such that ๐‘„๐œ–(๐‘ฅ),๐‘ƒ๐œ–[](๐‘ฅ)โˆˆ๐‘“(๐‘ฅ),๐‘”(๐‘ฅ),๐‘ฅโˆˆ๐ผ๐œ–,๐œ–<๐œ–1.(3.10) On the other hand, we have (๐‘+1)ฮฆ๐‘๐ผ๐œ–(๎€œ๐น,๐‘„)=๐ผ๐œ–||||๐‘“(๐‘ฅ)โˆ’๐‘„(๐‘ฅ)๐‘+1+๎€œsgn(๐‘„(๐‘ฅ)โˆ’๐‘“(๐‘ฅ))๐‘‘๐‘ฅ๐ผ๐œ–|๐‘”(๐‘ฅ)โˆ’๐‘„(๐‘ฅ)|๐‘+1sgn(๐‘”(๐‘ฅ)โˆ’๐‘„(๐‘ฅ))๐‘‘๐‘ฅ,๐‘„โˆˆฮ ๐‘›,(3.11) From (3.10) and (3.11), we get โ€–โ€–๐‘“โˆ’๐‘„๐œ–โ€–โ€–๐‘+1๐‘+1,๐ผ๐œ–+โ€–โ€–๐‘”โˆ’๐‘„๐œ–โ€–โ€–๐‘+1๐‘+1,๐ผ๐œ–=โ€–โ€–๐‘“โˆ’๐‘ƒ๐œ–โ€–โ€–๐‘+1๐‘+1,๐ผ๐œ–+โ€–โ€–๐‘”โˆ’๐‘ƒ๐œ–โ€–โ€–๐‘+1๐‘+1,๐ผ๐œ–,(3.12) for all ๐œ–<๐œ–1. So, ๐‘„๐œ–=๐‘ƒ๐œ– for all ๐œ–<๐œ–1.

Remark 3.4. If ฮฆ[๐‘Ž,๐‘](๐น,๐‘„)=sup๐‘ฅโˆˆ[๐‘Ž,๐‘]sup๐‘ฆโˆˆ๐น(๐‘ฅ)|๐‘ฆโˆ’๐‘„(๐‘ฅ)|, then ฮฆ[๐‘Ž,๐‘](๐น,๐‘„)=sup๐‘ฅโˆˆ[๐‘Ž,๐‘]๎€ฝ||๐‘“||,||๐‘”||๎€พmax(๐‘ฅ)โˆ’๐‘„(๐‘ฅ)(๐‘ฅ)โˆ’๐‘„(๐‘ฅ)(3.13) implies that ๐‘„๐œ– is the best ๐‘™โˆž-simultaneous approximant in ๐ฟโˆž([๐‘Ž,๐‘]), for all ๐œ–>0.

Acknowledgments

This work was supported by Universidad Nacional de Rio Cuarto, CONICET, and ANPCyT.