Abstract

We improve the degree of approximation by Bernstein-Durrmeyer polynomials taking their iterates and obtain error estimate in higher-order approximation.

1. Introduction

The Bernstein-Durrmeyer polynomials𝑀𝑛(𝑓;𝑑)=(𝑛+1)π‘›ξ“πœˆ=0𝑝𝑛,πœˆξ€œ(𝑑)10𝑝𝑛,𝜈(𝑒)𝑓(𝑒)𝑑𝑒,(1.1) where 𝑝𝑛,𝜈(𝑑)=(𝑛𝑣)π‘‘πœˆ(1βˆ’π‘‘)π‘›βˆ’πœˆ, π‘‘βˆˆ[0,1], were introduced by Durrmeyer [1] and extensively studied by Derriennic [2] and several other researchers. It turns out that the order of approximation by these operators is, at best, π’ͺ(π‘›βˆ’1) however smooth the function may be. In order to improve this rate of approximation, we consider an iterative combination 𝑇𝑛,π‘˜(𝑓;𝑑) of the operators 𝑀𝑛(𝑓;𝑑). This technique of improving the rate of convergence was given by Micchelli [3] who first used it to improve the order of approximation by Bernstein polynomials 𝐡𝑛(𝑓;𝑑). Recently, this technique has been applied to obtain some direct and inverse theorems in ordinary and simultaneous approximation by several sequences of linear positive operators in uniform norm (c.f., e.g., [4–6]). The object of this paper is to study some direct theorems in 𝐿𝑝-approximation by the operators 𝑇𝑛,π‘˜(𝑓;𝑑).

For π‘“βˆˆπΏπ‘[0,1], the operators 𝑀𝑛(𝑓;𝑑) can be expressed as π‘€π‘›ξ€œ(𝑓;𝑑)=10π‘Šπ‘›(𝑒,𝑑)𝑓(𝑒)𝑑𝑒,(1.2) where π‘Šπ‘›(𝑒,𝑑)=(𝑛+1)π‘›ξ“πœˆ=0𝑝𝑛,𝜈(𝑑)𝑝𝑛,𝜈(𝑒)(1.3) is the kernel of the operators.

For π‘šβˆˆπ‘0 (the set of nonnegative integers), the π‘šth order moment for the operators 𝑀𝑛 is defined as πœ‡π‘›,π‘š(𝑑)=𝑀𝑛((π‘’βˆ’π‘‘)π‘š;𝑑).(1.4)

Let 𝐿𝐡[π‘Ž,𝑏], 𝐢∞[π‘Ž,𝑏], 𝐴𝐢[π‘Ž,𝑏], and 𝐡𝑉[π‘Ž,𝑏] denote the classes of bounded Lebesgue integrable, infinitely differentiable, absolutely continuous functions, and functions of bounded variations, respectively, on the interval [π‘Ž,𝑏].

The Iterative combination 𝑇𝑛,π‘˜βˆΆπΏπ΅[0,1]β†’πΆβˆž[0,1] of the operators 𝑀𝑛(𝑓;𝑑) is defined as 𝑇𝑛,π‘˜ξ‚€ξ€·(𝑓;𝑑)=πΌβˆ’πΌβˆ’π‘€π‘›ξ€Έπ‘˜ξ‚(𝑓;𝑑)=π‘˜ξ“π‘Ÿ=1(βˆ’1)π‘Ÿ+1ξ‚΅π‘˜π‘Ÿξ‚Άπ‘€π‘Ÿπ‘›(𝑓;𝑑),π‘˜βˆˆπ‘,(1.5) where 𝑀0𝑛=𝐼 and π‘€π‘Ÿπ‘›=𝑀𝑛(π‘€π‘›π‘Ÿβˆ’1) for π‘Ÿβˆˆπ‘.

In Section 2 of this paper, we give some definitions and auxiliary results which will be needed to prove the main results. In Section 3, we obtain an estimate of error in 𝐿𝑝-approximation (1⩽𝑝<∞) by the iterative combination 𝑇𝑛,π‘˜(β‹…;𝑑) in terms of 𝐿𝑝-norm of derivatives of the function. From these estimates, we obtain a general error estimate in terms of 2π‘˜+2th integral modulus of smoothness of the function.

In what follows, we suppose that 0<π‘Ž1<π‘Ž2<π‘Ž3<𝑏3<𝑏2<𝑏1<1 and 𝐼𝑗=[π‘Žπ‘—,𝑏𝑗], 𝑗=1,2,3. Further, 𝐢 is a constant not always the same.

2. Preliminaries and Auxiliary Results

In the sequel, we will require the following results.

Lemma 2.1 (see [5]). For the function πœ‡π‘›,π‘š(𝑑), one has πœ‡π‘›,0(𝑑)=1, πœ‡π‘›,1(𝑑)=(1βˆ’2𝑑)/(𝑛+2), and there holds the recurrence relation (𝑛+π‘š+2)πœ‡π‘›,π‘š+1ξ€½πœ‡(𝑑)=𝑑(1βˆ’π‘‘)ξ…žπ‘›,π‘š(𝑑)+2π‘šπœ‡π‘›,π‘šβˆ’1ξ€Ύ+(𝑑)(π‘š+1)(1βˆ’2𝑑)πœ‡π‘›,π‘š(𝑑),(2.1) for π‘šβ©Ύ1.
Consequently, we have (i)πœ‡π‘›,π‘š(𝑑) is a polynomial in 𝑑 of degree π‘š, (ii)for every π‘‘βˆˆ[0,1], πœ‡π‘›,π‘š(𝑑)=π’ͺ(π‘›βˆ’[(π‘š+1)/2]), where [𝛽] is the integer part of 𝛽.

The π‘šth order moment for the operator 𝑀𝑝𝑛 is defined as πœ‡[𝑝]𝑛,π‘š(𝑑)=𝑀𝑝𝑛((π‘’βˆ’π‘‘)π‘š;𝑑), π‘βˆˆπ‘ (the set of natural numbers). We denote πœ‡[1]𝑛,π‘š(𝑑) by πœ‡π‘›,π‘š(𝑑).

Lemma 2.2 (see [1]). For the function 𝑝𝑛,𝜈(𝑑), there holds the result π‘‘π‘Ÿ(1βˆ’π‘‘)π‘Ÿπ‘‘π‘Ÿπ‘π‘›,𝜈(𝑑)π‘‘π‘‘π‘Ÿ=2𝑖+π‘—β©½π‘Ÿπ‘–,𝑗⩾0𝑛𝑖(πœˆβˆ’π‘›π‘‘)π‘—π‘žπ‘–,𝑗,π‘Ÿ(𝑑)𝑝𝑛,𝜈(𝑑),(2.2) where π‘žπ‘–,𝑗,π‘Ÿ(𝑑) are certain polynomials in 𝑑 independent of 𝑛 and 𝜈.

Lemma 2.3 (see [7]). There holds the recurrence relation πœ‡[𝑝+1]𝑛,π‘š(𝑑)=π‘šξ“π‘—=0π‘šβˆ’π‘—ξ“π‘–=0ξ‚΅π‘šπ‘—ξ‚Ά1𝐷𝑖!π‘–ξ‚€πœ‡[𝑝]𝑛,π‘šβˆ’π‘—ξ‚πœ‡(𝑑)𝑛,𝑖+𝑗(𝑑).(2.3)

Lemma 2.4 (see [7]). For π‘˜, π‘™βˆˆπ‘, there holds 𝑇𝑛,π‘˜((π‘’βˆ’π‘‘)𝑙;𝑑)=π’ͺ(π‘›βˆ’π‘˜).

Using Lemmas 2.1 and 2.3, we can prove the following.

Lemma 2.5. For π‘βˆˆπ‘, π‘šβˆˆπ‘0, and π‘‘βˆˆ[0,1], we have πœ‡[𝑝]𝑛,π‘šξ€·π‘›(𝑑)=π’ͺβˆ’[(π‘š+1)/2]ξ€Έ.(2.4)

Let π‘“βˆˆπΏπ‘[π‘Ž,𝑏], 1⩽𝑝<∞, and 𝐼1βŠ‚(π‘Ž,𝑏). Then, for sufficiently small πœ‚>0 the Steklov mean π‘“πœ‚,π‘š of π‘šth order corresponding to 𝑓 is defined as follows:π‘“πœ‚,π‘š(𝑑)=πœ‚βˆ’π‘šξ€œπœ‚/2βˆ’πœ‚/2β‹―ξ€œπœ‚/2βˆ’πœ‚/2𝑓(𝑑)+(βˆ’1)π‘šβˆ’1Ξ”π‘šβˆ‘π‘šπ‘–=1𝑑𝑖𝑓(𝑑)π‘šξ‘π‘–=1𝑑𝑑𝑖,π‘‘βˆˆπΌ1,(2.5) where Ξ”π‘šβ„Ž is the forward difference operator with step length β„Ž.

Lemma 2.6. Let π‘“βˆˆπΏπ‘[π‘Ž,𝑏], 1⩽𝑝<∞, and 𝐼1βŠ‚(π‘Ž,𝑏). Then, for the function π‘“πœ‚,π‘š, we have (a)π‘“πœ‚,π‘š has derivatives up to order π‘š over 𝐼1, (b)‖𝑓(π‘Ÿ)πœ‚,π‘šβ€–πΏπ‘(𝐼1)β©½πΆπœ‚βˆ’π‘Ÿπœ”π‘Ÿ(𝑓,πœ‚,[π‘Ž,𝑏]), π‘Ÿ=1,2,…,π‘š,(c)β€–π‘“βˆ’π‘“πœ‚,π‘šβ€–πΏπ‘(𝐼1)β©½πΆπœ”π‘š(𝑓,πœ‚,[π‘Ž,𝑏]), (d)β€–π‘“πœ‚,π‘šβ€–πΏπ‘(𝐼1)β©½πΆπœ‚βˆ’π‘šβ€–π‘“β€–πΏπ‘[π‘Ž,𝑏], (e)‖𝑓(π‘Ÿ)πœ‚,π‘šβ€–πΏπ‘(𝐼1)⩽𝐢‖𝑓‖𝐿𝑝[π‘Ž,𝑏], where 𝐢 is a constant that depends on 𝑖 but is independent of 𝑓 and πœ‚.

Following [8, Theorem  18.17] or [9, pages 163–165], the proof of the above lemma easily follows hence the details are omitted.

Let π‘“βˆˆπΏπ‘[0,π‘Ž], 1⩽𝑝<∞. Then, the Hardy-Littlewood majorant β„Žπ‘“(π‘₯) of the function 𝑓 is defined asβ„Žπ‘“(π‘₯)=supπœ‰β‰ π‘₯1ξ€œπœ‰βˆ’π‘₯πœ‰π‘₯𝑓(𝑑)𝑑𝑑.(2.6)

Lemma 2.7. If 1<𝑝<∞, π‘“βˆˆπΏπ‘[0,π‘Ž], then β„Žπ‘“βˆˆπΏπ‘[0,π‘Ž] and β€–β€–β„Žπ‘“β€–β€–πΏπ‘[0,π‘Ž]β©½21/π‘π‘π‘βˆ’1‖𝑓‖𝐿𝑝[0,π‘Ž].(2.7)

The lemma follows from [10, page 32].

The next lemma gives a bound for the intermediate derivatives of 𝑓 in terms of the highest-order derivative and the function in 𝐿𝑝-norm.

Lemma 2.8 (see [11]). Let 1⩽𝑝<∞, π‘“βˆˆπΏπ‘[π‘Ž,𝑏]. Suppose 𝑓(π‘˜)∈𝐴𝐢[π‘Ž,𝑏] and 𝑓(π‘˜+1)βˆˆπΏπ‘[π‘Ž,𝑏]. Then, ‖‖𝑓(𝑗)‖‖𝐿𝑝[π‘Ž,𝑏]⩽𝐾𝑗‖‖𝑓(π‘˜+1)‖‖𝐿𝑝[π‘Ž,𝑏]+‖𝑓‖𝐿𝑝[π‘Ž,𝑏],𝑗=1,2,…,π‘˜,(2.8) where 𝐾𝑗 are certain constants independent of 𝑓.

The dual operator ξ‚Šπ‘€π‘› corresponding to the operator 𝑀𝑛 is defined as ξ‚Šπ‘€π‘›ξ€œ(𝑓;𝑒)=10π‘Šπ‘›(𝑒,𝑑)𝑓(𝑑)𝑑𝑑.(2.9) Then, the corresponding π‘šth order moment is given by ξπœ‡π‘›,π‘šξ‚Šπ‘€(𝑒)=𝑛((π‘‘βˆ’π‘’)π‘šβˆ«;𝑒)=10π‘Šπ‘›(𝑒,𝑑)(π‘‘βˆ’π‘’)π‘šπ‘‘π‘‘.

Lemma 2.9. For the function ξπœ‡π‘›,π‘š(𝑒), there holds the recurrence relation (π‘›βˆ’π‘šβˆ’2)ξπœ‡π‘›,π‘š+1(𝑒)=𝑒(1βˆ’π‘’)ξπœ‡ξ…žπ‘›,π‘š(𝑒)+(π‘š+1)(1βˆ’2𝑒)ξπœ‡π‘›,π‘šξ€·(𝑒)+2π‘šπ‘’βˆ’π‘’2ξ€Έξπœ‡π‘›,π‘šβˆ’1(𝑒).(2.10)

Proof. In view of the relation 𝑒(1βˆ’π‘’)π‘ξ…žπ‘›,π‘˜(𝑒)=(π‘˜βˆ’π‘›π‘’)𝑝𝑛,π‘˜(𝑒), we get 𝑒(1βˆ’π‘’)ξπœ‡ξ…žπ‘›,π‘š=(𝑒)(𝑛+1)π‘›ξ“π‘˜=0ξ€œ10𝑝𝑛,π‘˜(𝑑)𝑒(1βˆ’π‘’)π‘ξ…žπ‘›,π‘˜(𝑒)(π‘‘βˆ’π‘’)π‘šπ‘‘π‘‘βˆ’π‘šπ‘’(1βˆ’π‘’)ξπœ‡π‘›,π‘šβˆ’1(𝑒)=(𝑛+1)π‘›ξ“π‘˜=0(π‘˜βˆ’π‘›π‘’)𝑝𝑛,π‘˜ξ€œ(𝑒)10𝑝𝑛,π‘˜(𝑑)(π‘‘βˆ’π‘’)π‘šπ‘‘π‘‘βˆ’π‘šπ‘’(1βˆ’π‘’)ξπœ‡π‘›,π‘šβˆ’1(𝑒)=(𝑛+1)π‘›ξ“π‘˜=0𝑝𝑛,π‘˜ξ€œ(𝑒)10((π‘˜βˆ’π‘›π‘‘)+𝑛(π‘‘βˆ’π‘’))𝑝𝑛,π‘˜(𝑑)(π‘‘βˆ’π‘’)π‘šπ‘‘π‘‘βˆ’π‘šπ‘’(1βˆ’π‘’)ξπœ‡π‘›,π‘šβˆ’1(𝑒)=(𝑛+1)π‘›ξ“π‘˜=0𝑝𝑛,π‘˜ξ€œ(𝑒)10ξ€·π‘‘βˆ’π‘‘2ξ€Έπ‘ξ…žπ‘›,π‘˜(𝑑)(π‘‘βˆ’π‘’)π‘šπ‘‘π‘‘+π‘›ξπœ‡π‘›,π‘š+1(𝑒)βˆ’π‘šπ‘’(1βˆ’π‘’)ξπœ‡π‘›,π‘šβˆ’1(𝑒).(2.11) Expanding (π‘‘βˆ’π‘‘2) as a polynomial in (π‘‘βˆ’π‘’) and integrating by parts, we get 𝑒(1βˆ’π‘’)ξπœ‡ξ…žπ‘›,π‘š(𝑒)=βˆ’(𝑛+1)π‘›ξ“π‘˜=0𝑝𝑛,π‘˜ξ€œ(𝑒)10𝑝𝑛,π‘˜ξ€Ίξ€·(𝑑)(π‘š+1)(1βˆ’2𝑒)(π‘‘βˆ’π‘’)+π‘šπ‘’βˆ’π‘’2ξ€Έβˆ’(π‘š+2)(π‘‘βˆ’π‘’)2ξ€»Γ—(π‘‘βˆ’π‘’)π‘šβˆ’1𝑑𝑑+π‘›ξπœ‡π‘›,π‘š+1(𝑒)βˆ’π‘šπ‘’(1βˆ’π‘’)ξπœ‡π‘›,π‘šβˆ’1(𝑒)=βˆ’(π‘š+1)(1βˆ’2𝑒)ξπœ‡π‘›,π‘šξ€·(𝑒)βˆ’2π‘šπ‘’βˆ’π‘’2ξ€Έξπœ‡π‘›,π‘šβˆ’1(𝑒)βˆ’(π‘š+2)ξπœ‡π‘›,π‘š+1(𝑒)+π‘›ξπœ‡π‘›,π‘š+1(𝑒).(2.12)
Rearrangement of the terms gives (2.10).

Remark 2.10. From (2.10), it follows that ξπœ‡π‘›,π‘š(𝑒)=π’ͺ(π‘›βˆ’[(π‘š+1)/2]), where [𝛽] is the integer part of 𝛽.

3. Main Result

In this section, we obtain an error estimate in terms of 𝐿𝑝 norm. The proof of the case 𝑝>1 makes use of Lemma 2.7 regarding Hardy-Littlewood majorant and Lemma 2.8, while for 𝑝=1, we require only Lemma 2.8.

Theorem 3.1. If 𝑝>1, π‘“βˆˆπΏπ‘[0,1], 𝑓 has derivatives of order 2π‘˜ on 𝐼1 with 𝑓(2π‘˜βˆ’1)∈𝐴𝐢(𝐼1), and 𝑓(2π‘˜)βˆˆπΏπ‘(𝐼1), then for sufficiently large 𝑛‖‖𝑇𝑛,π‘˜β€–β€–(𝑓;β‹…)βˆ’π‘“(β‹…)𝐿𝑝(𝐼2)β©½πΆπ‘›βˆ’π‘˜ξ‚†β€–β€–π‘“(2π‘˜)‖‖𝐿𝑝(𝐼1)+‖𝑓‖𝐿𝑝[0,1].(3.1) Moreover, if π‘“βˆˆπΏ1[0,1], 𝑓 has derivatives up to the order (2π‘˜βˆ’1) on 𝐼1 with 𝑓(2π‘˜βˆ’2)∈𝐴𝐢(𝐼1), and 𝑓(2π‘˜βˆ’1)βˆˆπ΅π‘‰(𝐼1), then for sufficiently large 𝑛 there holds ‖‖𝑇𝑛,π‘˜β€–β€–(𝑓;β‹…)βˆ’π‘“(β‹…)𝐿1(𝐼2)β©½πΆπ‘›βˆ’π‘˜ξ‚†β€–β€–π‘“(2π‘˜βˆ’1)‖‖𝐡𝑉(𝐼1)+‖‖𝑓(2π‘˜βˆ’1)‖‖𝐿1(𝐼2)+‖𝑓‖𝐿1(𝐼2),(3.2) where 𝐢 is a certain constant independent of 𝑓 and 𝑛.

Proof. Let 𝑝>1, then for all π‘’βˆˆπΌ1 and π‘‘βˆˆπΌ2, we can write 𝑓(𝑒)βˆ’π‘“(𝑑)=2π‘˜βˆ’1𝑗=1𝑓(𝑗)(𝑑)𝑗!(π‘’βˆ’π‘‘)𝑗+1ξ€œ(2π‘˜βˆ’1)!π‘’π‘‘πœ‘(𝑒)(π‘’βˆ’π‘£)2π‘˜βˆ’1𝑓(2π‘˜)(𝑣)𝑑𝑣+𝐹(𝑒,𝑑)(1βˆ’πœ‘(𝑒)),(3.3) where πœ‘(𝑒) is the characteristic function of the interval 𝐼1 and 𝐹(𝑒,𝑑)=𝑓(𝑒)βˆ’2π‘˜βˆ’1𝑗=0𝑓(𝑗)(𝑑)𝑗!(π‘’βˆ’π‘‘)𝑗.(3.4) Therefore, operating by 𝑇𝑛,π‘˜ on both sides of (3.3), we obtain three terms, say 𝐸1, 𝐸2, and 𝐸3 corresponding to the three terms in the right-hand side of (3.3).
In view of Lemmas 2.4 and 2.8, we get ‖‖𝐸1‖‖𝐿𝑝(𝐼2)β©½πΆπ‘›βˆ’π‘˜ξ‚€β€–β€–π‘“(2π‘˜)‖‖𝐿𝑝(𝐼2)+‖𝑓‖𝐿𝑝(𝐼2).(3.5) Let β„Žπ‘“(2π‘˜) be the Hardy-Littleood majorant of 𝑓(2π‘˜) on 𝐼1. Then, in order to estimate 𝐸2, it is sufficient to consider the estimate for 𝐽1𝐽1=π‘€π‘›ξ€·πœ‘(𝑒)(π‘’βˆ’π‘‘)2π‘˜||β„Žπ‘“(2π‘˜)||ξ€Έ.(𝑒);𝑑(3.6) Applying HΓΆlder's inequality, Lemma 2.1, and then Fubini's theorem, we get ‖‖𝐽1‖‖𝑝𝐿𝑝(𝐼2)β©½ξ€·π‘€π‘›ξ€·πœ‘(𝑒)(π‘’βˆ’π‘‘)2π‘˜π‘ž;𝑑𝑝/π‘žΓ—π‘€π‘›ξ€·πœ‘(𝑒)(π‘’βˆ’π‘‘)𝑝||β„Žπ‘“(2π‘˜)||(𝑒)𝑝;π‘‘β©½πΆπ‘›βˆ’π‘˜π‘ξ€œπ‘1π‘Ž1ξ€œπ‘2π‘Ž2π‘Šπ‘›||β„Ž(𝑑,𝑒)𝑓(2π‘˜)||(𝑒)𝑝𝑑𝑑𝑑𝑒.(3.7) Now, in view of Lemmas 2.1 and 2.7, we have ‖‖𝐽1‖‖𝑝𝐿𝑝(𝐼2)β©½πΆπ‘›βˆ’π‘˜π‘ξ€œπ‘1π‘Ž1||β„Žπ‘“(2π‘˜)||(𝑒)π‘π‘‘π‘’β©½πΆπ‘›βˆ’π‘˜π‘β€–β€–π‘“(2π‘˜)‖‖𝑝𝐿𝑝(𝐼1).(3.8) Consequently, ‖‖𝐸2‖‖𝐿𝑝(𝐼2)β©½πΆπ‘›βˆ’π‘˜β€–β€–π‘“(2π‘˜)‖‖𝐿𝑝(𝐼1).(3.9) For π‘’βˆˆ[0,1]⧡𝐼1, π‘‘βˆˆπΌ2, we can find a 𝛿>0 such that |π‘’βˆ’π‘‘|⩾𝛿. Thus, ||𝑀𝑛||=|||||𝑀(𝐹(𝑒,𝑑)(1βˆ’πœ‘(𝑒));𝑑)𝑛𝑓(𝑒)βˆ’2π‘˜βˆ’1𝑗=0𝑓(𝑗)(𝑑)𝑗!(π‘’βˆ’π‘‘)𝑗ξƒͺξƒͺ|||||(1βˆ’πœ‘(𝑒));π‘‘β©½π›Ώβˆ’2π‘˜ξƒ―π‘€π‘›ξ€·||||𝑓(𝑒)(π‘’βˆ’π‘‘)2π‘˜ξ€Έ+;𝑑2π‘˜βˆ’1𝑗=0||𝑓(𝑗)||(𝑑)𝑀𝑗!𝑛|π‘’βˆ’π‘‘|2π‘˜+𝑗;𝑑=𝐽2+𝐽3,say.(3.10) On an application of HΓΆlder's inequality, Lemma 2.1, and Fubini's theorem, we get ‖‖𝐽2‖‖𝐿𝑝(𝐼2)β©½πΆπ‘›βˆ’π‘˜ξ‚΅ξ€œπ‘2π‘Ž2ξ€œ10||||𝑓(𝑒)π‘π‘Šπ‘›ξ‚Ά(𝑑,𝑒)𝑑𝑑𝑑𝑒1/π‘β©½πΆπ‘›βˆ’π‘˜β€–π‘“β€–πΏπ‘[0,1].(3.11) Now in view of Lemmas 2.1 and 2.8, we have the inequality ‖‖𝐽3‖‖𝐿𝑝(𝐼2)β©½πΆπ‘›βˆ’π‘˜ξ‚€β€–π‘“β€–πΏπ‘(𝐼2)+‖‖𝑓(2π‘˜)‖‖𝐿𝑝(𝐼2).(3.12) Combining the estimates (3.5)–(3.12), (3.1) follows.
Now, let 𝑝=1. Then, we can expand 𝑓(𝑒) for almost all π‘‘βˆˆπΌ2 and for all π‘’βˆˆπΌ1, as 𝑓(𝑒)βˆ’π‘“(𝑑)=2π‘˜βˆ’1𝑗=1𝑓(𝑗)(𝑑)𝑗!(π‘’βˆ’π‘‘)𝑗+1ξ€œ(2π‘˜βˆ’1)!π‘’π‘‘πœ‘(𝑒)(π‘’βˆ’π‘£)2π‘˜βˆ’1𝑑𝑓(2π‘˜βˆ’1)(𝑣)+𝐹(𝑒,𝑑)(1βˆ’πœ‘(𝑒)),(3.13) where πœ‘(𝑒) and 𝐹(𝑒,𝑑) are defined as above. Therefore, operating by 𝑇𝑛,π‘˜ on both sides of (3.13), we obtain three terms 𝐸4, 𝐸5, and 𝐸6, say corresponding to the three terms in the right-hand side of (3.13).
Now proceeding as in the case of the estimate of 𝐸1, we have ‖‖𝐸4‖‖𝐿1(𝐼2)β©½πΆπ‘›βˆ’π‘˜ξ‚€β€–π‘“β€–πΏ1(𝐼2)+‖‖𝑓(2π‘˜βˆ’1)‖‖𝐿1(𝐼2).(3.14)
It can easily be shown that ‖‖𝑀𝑛‖‖(𝑓,𝑑)𝐿1(𝐼)⩽‖𝑓(𝑑)‖𝐿1(𝐼).(3.15) Consequently, by induction, we get β€–β€–π‘€π‘Ÿπ‘›β€–β€–(𝑓,𝑑)𝐿1(𝐼)=‖‖𝑀𝑛(π‘€π‘›π‘Ÿβˆ’1β€–β€–(𝑓,𝑒),𝑑)𝐿1(𝐼)⩽‖𝑓(𝑑)‖𝐿1(𝐼).(3.16) Therefore, in order to get an estimate for 𝐸5, it is sufficient to consider the estimate for 𝐾‖‖‖𝑀𝐾=π‘›ξ‚΅ξ€œπ‘’π‘‘πœ‘(𝑒)|π‘’βˆ’π‘£|2π‘˜βˆ’1𝑑𝑓(2π‘˜βˆ’1)ξ‚Άβ€–β€–β€–(𝑣);𝑑𝐿1(𝐼2)β©½ξ€œπ‘2π‘Ž2ξƒ©ξ€œπ‘1π‘Ž1π‘Šπ‘›(𝑑,𝑒)|π‘’βˆ’π‘‘|2π‘˜βˆ’1||||ξ€œπ‘’π‘‘||𝑑𝑓2π‘˜βˆ’1||||||ξƒͺ(𝑣)𝑑𝑒𝑑𝑑.(3.17) For each 𝑛, there exists the integer π‘Ÿ=π‘Ÿ(𝑛) s.t. βˆšπ‘Ÿ/𝑛⩽max(𝑏1βˆ’π‘Ž2,𝑏2βˆ’π‘Ž1√)β©½(π‘Ÿ+1)/π‘›πΎβ©½π‘Ÿξ“π‘™=0ξ€œπ‘2π‘Ž2ξƒ―ξ€œβˆšπ‘‘+(𝑙+1)/π‘›βˆšπ‘‘+𝑙/π‘›π‘Šπ‘›(𝑑,𝑒)|π‘’βˆ’π‘‘|2π‘˜βˆ’1ξ€œβˆšπ‘‘+(𝑙+1)/𝑛𝑑||πœ‘(𝑣)𝑑𝑓(2π‘˜βˆ’1)||+ξ€œ(𝑣)π‘‘π‘’βˆšπ‘‘βˆ’π‘™/π‘›βˆšπ‘‘βˆ’(𝑙+1)/π‘›π‘Šπ‘›(𝑑,𝑒)|π‘’βˆ’π‘‘|2π‘˜βˆ’1ξ€œπ‘‘βˆšπ‘‘βˆ’(𝑙+1)/π‘›πœ‘||(𝑣)𝑑𝑓(2π‘˜βˆ’1)||ξƒ°β©½(𝑣)π‘‘π‘’π‘‘π‘‘π‘Ÿξ“π‘™=1ξ€œπ‘2π‘Ž2ξƒ―ξ€œβˆšπ‘‘+(𝑙+1)/π‘›βˆšπ‘‘+𝑙/π‘›π‘Šπ‘›π‘›(𝑑,𝑒)2𝑙4|π‘’βˆ’π‘‘|2π‘˜+3ξ€œβˆšπ‘‘+(𝑙+1)/𝑛𝑑||πœ‘(𝑣)𝑑𝑓(2π‘˜βˆ’1)||+ξ€œ(𝑣)π‘‘π‘’βˆšπ‘‘βˆ’π‘™/π‘›βˆšπ‘‘βˆ’(𝑙+1)/π‘›π‘Šπ‘›π‘›(𝑑,𝑒)2𝑙4|π‘’βˆ’π‘‘|2π‘˜+3ξ€œπ‘‘βˆšπ‘‘βˆ’(𝑙+1)/𝑛||πœ‘(𝑣)𝑑𝑓(2π‘˜βˆ’1)||ξƒ°+ξ€œ(𝑣)𝑑𝑒𝑑𝑑𝑏2π‘Ž2ξ€œπ‘2√+1/π‘›π‘Ž2βˆšβˆ’1/π‘›π‘Šπ‘›(𝑑,𝑒)|π‘’βˆ’π‘‘|2π‘˜βˆ’1ξ€œπ‘‘+π‘›βˆ’1/2π‘‘βˆ’π‘›βˆ’1/2||πœ‘(𝑣)𝑑𝑓(2π‘˜βˆ’1)||𝑑𝑒𝑑𝑑⩽2π‘Ÿξ“π‘™=1𝑛2𝑙4𝑙+1βˆšπ‘›ξ€œπ‘1π‘Ž1π‘Šπ‘›(𝑑,𝑒)|π‘’βˆ’π‘‘|2π‘˜+3‖‖𝑓𝑑𝑒(2π‘˜βˆ’1)‖‖𝐡𝑉(𝐼1)+2βˆšπ‘›ξ€œπ‘1π‘Ž1π‘Šπ‘›(𝑑,𝑒)|π‘’βˆ’π‘‘|2π‘˜βˆ’1‖‖𝑓𝑑𝑒(2π‘˜βˆ’1)‖‖𝐡𝑉(𝐼1)β©½πΆπ‘›βˆ’π‘˜β€–β€–π‘“(2π‘˜βˆ’1)‖‖𝐡𝑉(𝐼1).(applyingFubini'stheorem).(3.18)
To estimate 𝐸6, for all π‘’βˆˆ[0,1]⧡𝐼1, π‘‘βˆˆπΌ2, we can choose a 𝛿>0 such that |π‘’βˆ’π‘‘|⩾𝛿. Therefore, we get the inequality ‖‖𝐸4‖‖𝐿1(𝐼2)ξ€œβ©½πΆπ‘2π‘Ž2ξ€œ10π‘Šπ‘›||||+(𝑑,𝑒)𝑓(𝑒)(1βˆ’πœ‘(𝑒))𝑑𝑒𝑑𝑑2π‘˜βˆ’1𝑖=01ξ€œπ‘–!𝑏2π‘Ž2ξ€œ10π‘Šπ‘›||𝑓(𝑑,𝑒)(𝑖)(𝑑)(π‘’βˆ’π‘‘)𝑖||(1βˆ’πœ‘(𝑒))𝑑𝑒𝑑𝑑=𝑆1+𝑆2,say.(3.19) Since, π‘Šπ‘›(𝑑,𝑒) is symmetric in 𝑑 and 𝑒, there follows 𝑆1β©½πΆπ‘›βˆ’π‘˜β€–π‘“β€–πΏ1(𝐼2).(3.20) In view of Lemma 2.8, we obtain 𝑆2β©½πΆπ‘›βˆ’π‘˜ξ‚€β€–π‘“β€–πΏ1(𝐼2)+‖‖𝑓(2π‘˜βˆ’1)‖‖𝐿1(𝐼2).(3.21) From the estimates (3.14)–(3.21) and the definition of 𝑇𝑛,π‘˜, we get (3.2).

Theorem 3.2. If 𝑝⩾1, π‘“βˆˆπΏπ‘[0,1]. Then, for all 𝑛 sufficiently large there holds ‖‖𝑇𝑛,π‘˜β€–β€–(𝑓;β‹…)βˆ’π‘“πΏπ‘(𝐼2)ξƒ©πœ”β©½πΆ2π‘˜ξƒ©1𝑓,βˆšπ‘›,𝑝,𝐼1ξƒͺ,β‹…+π‘›βˆ’π‘˜β€–π‘“β€–πΏπ‘[0,1]ξƒͺ,(3.22) where 𝐢 is a constant independent of 𝑓 and 𝑛.

Proof. In order to prove the theorem, it is sufficient to prove it for the function 𝑓𝑔, where π‘”βˆˆπΆβˆž0 be such that suppπ‘”βŠ‚πΌ1 and 𝑔=1 in 𝐼2. Let for convenience 𝑓=𝑓𝑔. Let ξπ‘“πœ‚,2π‘˜ be the Steklov mean of order 2π‘˜ corresponding to the function 𝑓, where πœ‚>0 is sufficiently small. Then, we have ‖‖𝑇𝑛,π‘˜(𝑓‖‖𝑓;β‹…)βˆ’πΏπ‘(𝐼2)⩽‖‖𝑇𝑛,π‘˜(ξξπ‘“π‘“βˆ’πœ‚,2π‘˜β€–β€–;β‹…)𝐿𝑝(𝐼2)+‖‖𝑇𝑛,π‘˜(ξπ‘“πœ‚,2π‘˜ξπ‘“;β‹…)βˆ’πœ‚,2π‘˜β€–β€–πΏπ‘(𝐼2)+β€–β€–ξπ‘“πœ‚,2π‘˜βˆ’ξπ‘“β€–β€–πΏπ‘(𝐼2)=𝐽1+𝐽2+𝐽3,say.(3.23) Let πœ‘ be the characteristic function of 𝐼3. Then, π‘€π‘›ξ‚€ξξπ‘“π‘“βˆ’πœ‚,2π‘˜ξ‚;𝑑=π‘€π‘›ξ‚€ξ‚€ξξπ‘“πœ‘(𝑒)π‘“βˆ’πœ‚,2π‘˜ξ‚ξ‚;𝑑+𝑀𝑛𝑓(1βˆ’πœ‘(𝑒))π‘“βˆ’πœ‚,2π‘˜ξ‚ξ‚;𝑑=𝐽4+𝐽5say.(3.24) For 𝑝>1 using HΓΆlder's inequality and then applying Fubini's theorem, we get ‖‖𝐽4‖‖𝑝𝐿𝑝(𝐼2)β©½ξ€œπ‘2π‘Ž2ξ€œπ‘3π‘Ž3π‘Šπ‘›||𝑓(𝑑,𝑒)π‘“βˆ’πœ‚,2π‘˜||π‘β€–β€–ξξπ‘“π‘‘π‘’π‘‘π‘‘β©½πΆπ‘“βˆ’πœ‚,2π‘˜β€–β€–π‘πΏπ‘(𝐼3).(3.25) This in view of property (c) of Steklov’s mean implies ‖‖𝐽4‖‖𝐿𝑝(𝐼2)β©½πΆπœ”2π‘˜ξ‚€ξπ‘“,πœ‚,𝑝,𝐼2.(3.26) In the case 𝑝=1, (3.22) is obtained by boundedness of the operator 𝑀𝑛. Now, as above in Theorem 3.1 for π‘’βˆˆπΌ2⧡𝐼3, we can choose a 𝛿>0 such that |π‘’βˆ’π‘‘|⩾𝛿. Then, from Fubini's theorem and moment estimates 1 of dual operator, we get 𝐽5β©½π›Ώβˆ’2π‘˜ξ€œπΌ2⧡𝐼3π‘Šπ‘›(𝑓𝑑,𝑒)π‘“βˆ’πœ‚,2π‘˜ξ‚(π‘’βˆ’π‘‘)2π‘˜π‘‘π‘’.(3.27) Therefore, ‖‖𝐽5‖‖𝐿𝑝(𝐼2)β©½πΆπ‘›βˆ’π‘˜β€–β€–ξξπ‘“π‘“βˆ’πœ‚,2π‘˜β€–β€–πΏπ‘(𝐼2).(3.28) Consequently, we have the estimate 𝐽1ξ‚€πœ”β©½πΆ2π‘˜ξ‚€ξπ‘“,πœ‚,𝑝,𝐼2+π‘›βˆ’π‘˜β€–β€–ξξπ‘“π‘“βˆ’πœ‚,2π‘˜β€–β€–πΏπ‘(𝐼2).(3.29) Now using Theorem 3.1 and Lemma 2.8, 𝐽2β©½πΆπ‘›βˆ’π‘˜ξ‚΅β€–β€–ξπ‘“πœ‚,2π‘˜β€–β€–πΏπ‘[0,1]+‖‖𝑓(2π‘˜)πœ‚,2π‘˜β€–β€–πΏπ‘(𝐼1)ξ‚Ά.(3.30) In view of property (c) of Steklov’s means, we get the inequality 𝐽3β©½πΆπœ”2π‘˜ξ‚€ξπ‘“,πœ‚,𝑝,𝐼1.(3.31) Choosing βˆšπœ‚=1/𝑛, the result follows from the estimates of 𝐽1-𝐽3.

Acknowledgment

A. R. Gairola is thankful to the Council of Scientific and Industrial Research, New Delhi, India for financial support to carry out the above work.