Table of Contents
ISRN Oncology
Volume 2011, Article ID 249235, 9 pages
http://dx.doi.org/10.5402/2011/249235
Review Article

The Role of Tobacco-Derived Carcinogens in Pancreas Cancer

1Hepato-Pancreato-Biliary Unit, Department of Surgery, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK
2Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
3Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK

Received 21 April 2011; Accepted 14 May 2011

Academic Editor: M. Talieri

Copyright © 2011 Rajiv Lochan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. A. van der Gaag and D. J. Gouma, “PBD treatment of cancer of the head of the pancreas,” Nature Reviews Clinical Oncology, vol. 7, no. 11, 2010. View at Publisher · View at Google Scholar · View at PubMed
  2. United States. Public Health Service. Office of the Surgeon General., United States. Office on Smoking and Health, The health consequences of smoking : a report of the Surgeon General, U.S. Deptartment of Health and Human Services, Public Health Service, Rockville, Md, USA, 2004.
  3. S. Iodice, S. Gandini, P. Maisonneuve, and A. B. Lowenfels, “Tobacco and the risk of pancreatic cancer: a review and meta-analysis,” Langenbeck's Archives of Surgery, vol. 393, no. 4, pp. 535–545, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. R. H. Hruban, N. V. Adsay, J. Albores-Saavedra et al., “Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions,” American Journal of Surgical Pathology, vol. 25, no. 5, pp. 579–586, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. R. A. Wise and P. P. Rompre, “Brain dopamine and reward,” Annual Review of Psychology, vol. 40, pp. 191–225, 1989. View at Google Scholar · View at Scopus
  6. D. J. K. Balfour, “The neurobiology of tobacco dependence: a preclinical perspective on the role of the dopamine projections to the nucleus,” Nicotine and Tobacco Research, vol. 6, no. 6, pp. 899–912, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. S. Hecht, “Biochemistry, biology, and carcinogenicity of tobacco-specific N- nitrosamines,” Chemical Research in Toxicology, vol. 11, no. 6, pp. 559–603, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. S. S. Hecht and D. Hoffmann, “Tobacco-specific nitrosamines, an important group of carcinogens in tobacco and tobacco smoke,” Carcinogenesis, vol. 9, no. 6, pp. 875–884, 1988. View at Google Scholar · View at Scopus
  9. D. Hoffmann, J. D. Adams, J. J. Piade, and S. S. Hecht, “Chemical studies on tobacco smoke LXVIII. Analysis of volatile and tobacco-specific nitrosamines in tobacco products,” IARC Scientific Publications, no. 31, pp. 507–516, 1980. View at Google Scholar · View at Scopus
  10. S. S. Hecht, M. A. Morse, S. Amin et al., “Rapid single-dose model for lung tumor induction in A/J mice by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and the effect of diet,” Carcinogenesis, vol. 10, no. 10, pp. 1901–1904, 1989. View at Google Scholar · View at Scopus
  11. S. S. Hecht, J. D. Adams, S. Numoto, and D. Hoffmann, “Induction of respiratory tract tumors in Syrian golden hamsters by a single dose of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and the effect of smoke inhalation,” Carcinogenesis, vol. 4, no. 10, pp. 1287–1290, 1983. View at Google Scholar · View at Scopus
  12. S. E. Murphy, R. Heiblum, and N. Trushin, “Comparative metabolism of N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by cultured F344 rat oral tissue and esophagus,” Cancer Research, vol. 50, no. 15, pp. 4685–4691, 1990. View at Google Scholar · View at Scopus
  13. A. Castonguay, G. D. Stoner, H. A. J. Schut, and S. S. Hecht, “Metabolism of tobacco-specific N-nitrosamines by cultured human tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 21, pp. 6694–6697, 1983. View at Google Scholar · View at Scopus
  14. P. Upadhyaya, B. R. Lindgren, and S. S. Hecht, “Comparative levels of O6-methylguanine, pyridyloxobutyl-, and pyridylhydroxybutyl-DNA adducts in lung and liver of rats treated chronically with the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1- butanone,” Drug Metabolism and Disposition, vol. 37, no. 6, pp. 1147–1151, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. K. Baskaran, S. Laconi, and M. K. Reddy, “Transformation of hamster pancreatic duct cells by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), in vitro,” Carcinogenesis, vol. 15, no. 11, pp. 2461–2466, 1994. View at Google Scholar · View at Scopus
  16. R. Davis, W. Rizwani, S. Banerjee et al., “Nicotine promotes tumor growth and metastasis in mouse models of lung cancer,” PLoS ONE, vol. 4, no. 10, Article ID e7524, 2009. View at Publisher · View at Google Scholar · View at PubMed
  17. P. Dasgupta, W. Rizwani, S. Pillai et al., “Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines,” International Journal of Cancer, vol. 124, no. 1, pp. 36–45, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. A. Rivenson, D. Hoffmann, B. Prokopczyk, S. Amin, and S. S. Hecht, “Induction of lung and exocrine pancreas tumors in F344 rats by tobacco-specific and Areca-derived N-nitrosamines,” Cancer Research, vol. 48, no. 23, pp. 6912–6917, 1988. View at Google Scholar · View at Scopus
  19. D. Hoffmann, A. Rivenson, F. L. Chung, and S. S. Hecht, “Nicotine-derived N-nitrosamines (TSNA) and their relevance in tobacco carcinogenesis,” Critical Reviews in Toxicology, vol. 21, no. 4, pp. 305–311, 1991. View at Google Scholar · View at Scopus
  20. S. Zhang, M. Wang, P. W. Villalta et al., “Analysis of pyridyloxobutyl and pyridylhydroxybutyl DNA adducts in extrahepatic tissues of F344 rats treated chronically with 4-(methylnitrosamino) -1-(3-pyridyl)-1-butanone and enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl) -1-butanol,” Chemical Research in Toxicology, vol. 22, no. 5, pp. 926–936, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. P. M. Pour and A. Rivenson, “Induction of a mixed ductal-squamous-islet cell carcinoma in a rat treated with a tobacco-specific carcinogen,” American Journal of Pathology, vol. 134, no. 3, pp. 627–631, 1989. View at Google Scholar · View at Scopus
  22. J. Schulze, E. Richter, U. Binder, and W. Zwickenpflug, “Billiary excretion of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in the rat,” Carcinogenesis, vol. 13, no. 11, pp. 1961–1965, 1992. View at Google Scholar · View at Scopus
  23. M. Niedergethmann, M. Rexin, R. Hildenbrand et al., “Prognostic implications of routine, immunohistochemical, and molecular staging in resectable pancreatic adenocarcinoma,” American Journal of Surgical Pathology, vol. 26, no. 12, pp. 1578–1587, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. K. C. Conlon, D. S. Klimstra, and M. F. Brennan, “Long-term survival after curative resection for pancreatic ductal adenocarcinoma: clinicopathologic analysis of 5-year survivors,” Annals of Surgery, vol. 223, no. 3, pp. 273–279, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Iakimov and I. Zheleva, “Pancreatic cancer. I. The age distribution and location of the tumor process in the gland (a statistical analysis based on autopsy data from the Department of Pathological Anatomy of the Biomedical Research Institute over the 25 years from 1963–1987,” Khirurgiia, vol. 44, no. 1, pp. 28–31, 1991. View at Google Scholar · View at Scopus
  26. B. Prokopczyk, D. Hoffmann, M. Bologna et al., “Identification of tobacco-derived compounds in human pancreatic juice,” Chemical Research in Toxicology, vol. 15, no. 5, pp. 677–685, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. K. E. Anderson, G. J. Hammons, F. F. Kadlubar et al., “Metabolic activation of aromatic amines by human pancreas,” Carcinogenesis, vol. 18, no. 5, pp. 1085–1092, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Tomioka, A. Andren-Sandberg, H. Fujii, H. Egami, Y. Takiyama, and P. M. Pour, “Comparative histopathological findings in the pancreas of cigarette smokers and non-smokers,” Cancer Letters, vol. 55, no. 2, pp. 121–128, 1990. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Randerath, D. Mittal, and K. Randerath, “Tissue distribution of covalent DNA damage in mice treated dermally with cigarette ‘tar’ preference for lung and heart DNA,” Carcinogenesis, vol. 9, no. 1, pp. 75–80, 1988. View at Google Scholar · View at Scopus
  30. J. Cuzick, M. N. Routledge, D. Jenkins, and R. C. Garner, “DNA adducts in different tissues of smokers and non-smokers,” International Journal of Cancer, vol. 45, no. 4, pp. 673–678, 1990. View at Google Scholar · View at Scopus
  31. E. Randerath and K. Randerath, “Monitoring tobacco smoke-induced DNA damage by 32P-postlabelling,” IARC Scientific Publications, no. 124, pp. 305–314, 1993. View at Google Scholar · View at Scopus
  32. J. Geradts, R. H. Hruban, M. Schutte, S. E. Kern, and R. Maynard, “Immunohistochemical p16(INK4a) analysis of archival tumors with deletion, hypermethylation, or mutation of the CDKN2/MTS1 gene: a comparison of four commercial antibodies,” Applied Immunohistochemistry, vol. 8, no. 1, pp. 71–79, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. R. H. Hruban, M. Goggins, J. Parsons, and S. E. Kern, “Progression model for pancreatic cancer,” Clinical Cancer Research, vol. 6, no. 8, pp. 2969–2972, 2000. View at Google Scholar · View at Scopus
  34. M. Goggins, R. H. Hruban, and S. E. Kern, “BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications,” American Journal of Pathology, vol. 156, no. 5, pp. 1767–1771, 2000. View at Google Scholar · View at Scopus
  35. R. E. Wilentz, M. Goggins, M. Redston et al., “Genetic, immunohistochemical, and clinical features of medullary carcinoma of the pancreas: a newly described and characterized entity,” American Journal of Pathology, vol. 156, no. 5, pp. 1641–1651, 2000. View at Google Scholar · View at Scopus
  36. R. E. Wilentz, C. A. Iacobuzio-Donahue, P. Argani et al., “Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression,” Cancer Research, vol. 60, no. 7, pp. 2002–2006, 2000. View at Google Scholar · View at Scopus
  37. M. Tsutsumi, S. Kondoh, O. Noguchi et al., “K-ras gene mutation in early ductal lesions induced in a rapid production model for pancreatic carcinomas in Syrian hamsters,” Japanese Journal of Cancer Research, vol. 84, no. 11, pp. 1101–1105, 1993. View at Google Scholar · View at Scopus
  38. M. Tsutsumi, Y. Murakami, S. Kondoh et al., “Comparison of K-ras oncogene activation in pancreatic duct carcinomas and cholangiocarcinomas induced in hamsters by N-nitrosobis(2-hydroxypropyl)amine,” Japanese Journal of Cancer Research, vol. 84, no. 9, pp. 956–960, 1993. View at Google Scholar · View at Scopus
  39. Y. Nagata, M. Abe, K. Motoshima, E. Nakayama, and H. Shiku, “Frequent glycine-to-aspartic acid mutations at codon 12 of c-Ki-ras gene in human pancreatic cancer in Japanese,” Japanese Journal of Cancer Research, vol. 81, no. 2, pp. 135–140, 1990. View at Google Scholar · View at Scopus
  40. R. H. Hruban, A. D. M. van Mansfeld, G. J. A. Offerhaus et al., “K-ras oncogene activation in adenocarcinoma of the human pancreas: a study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization,” American Journal of Pathology, vol. 143, no. 2, pp. 545–554, 1993. View at Google Scholar · View at Scopus
  41. R. J. C. Slebos, J. A. Hoppin, P. E. Tolbert et al., “K-ras and p53 in pancreatic cancer: association with medical history, histopathology, and environmental exposures in a population-based study,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 11, pp. 1223–1232, 2000. View at Google Scholar · View at Scopus
  42. M. Porta, M. Crous-Bou, P. A. Wark et al., “Cigarette smoking and K-ras mutations in pancreas, lung and colorectal adenocarcinomas: etiopathogenic similarities, differences and paradoxes,” Mutation Research, vol. 682, no. 2-3, pp. 83–93, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. M. Crous-Bou, M. Porta, T. López et al., “Lifetime history of tobacco consumption and K-ras mutations in exocrine pancreatic cancer,” Pancreas, vol. 35, no. 2, pp. 135–141, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. H. M. Schuller, G. Kabalka, G. Smith, A. Mereddy, M. Akula, and M. Cekanova, “Detection of overexpressed COX-2 in precancerous lesions of hamster pancreas and lungs by molecular imaging: implications for early diagnosis and prevention,” ChemMedChem, vol. 1, no. 6, pp. 603–610, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. D. L. Weddle, P. Tithoff, M. Williams, and H. M. Schuller, “β-Adrenergic growth regulation of human cancer cell lines derived from pancreatic ductal carcinomas,” Carcinogenesis, vol. 22, no. 3, pp. 473–479, 2001. View at Google Scholar · View at Scopus
  46. H. M. Schuller, P. K. Tithof, M. Williams, and H. Plummer III, “The tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1- butanone is a β-adrenergic agonist and stimulates DNA synthesis in lung adenocarcinoma via β-adrenergic receptor-mediated release of arachidonic acid,” Cancer Research, vol. 59, no. 18, pp. 4510–4515, 1999. View at Google Scholar · View at Scopus
  47. P. G. Park, J. Merryman, M. Orloff, and H. M. Schuller, “β-adrenergic mitogenic signal transduction in peripheral lung adenocarcinoma: implications for individuals with preexisting chronic lung disease,” Cancer Research, vol. 55, no. 16, pp. 3504–3508, 1995. View at Google Scholar · View at Scopus
  48. H. M. Schuller, “Neurotransmitter receptor-mediated signaling pathways as modulators of carcinogenesis,” Progress in Experimental Tumor Research, vol. 39, pp. 45–63, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. H. Schuller, L. Zhang, D. L. Weddle, A. Castonguay, K. Walker, and M. S. Miller, “The cyclooxygenase inhibitor ibuprofen and the FLAP inhibitor MK886 inhibit pancreatic carcinogenesis induced in hamsters by transplacental exposure to ethanol and the tobacco carcinogen NNK,” Journal of Cancer Research and Clinical Oncology, vol. 128, no. 10, pp. 525–532, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. H. A. N. Al-Wadei and H. M. Schuller, “Nicotinic receptor-associated modulation of stimulatory and inhibitory neurotransmitters in NNK-induced adenocarcinoma of the lungs and pancreas,” Journal of Pathology, vol. 218, no. 4, pp. 437–445, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. S. Subongkot, D. Frame, W. Leslie, and D. Drajer, “Selective cyclooxygenase-2 inhibition: a target in cancer prevention and treatment,” Pharmacotherapy, vol. 23, no. 1, pp. 9–28, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Ghadirian, A. Simard, and J. Baillargeon, “Cancer of the pancreas in two brothers and one sister,” International Journal of Pancreatology, vol. 2, no. 5-6, pp. 383–391, 1987. View at Google Scholar · View at Scopus
  53. M. Del Chiaro, A. Zerbi, M. Falconi et al., “Cancer risk among the relatives of patients with pancreatic ductal adenocarcinoma,” Pancreatology, vol. 7, no. 5-6, pp. 459–469, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. P. Ghadirian, P. Boyle, A. Simard, J. Baillargeon, P. Maisonneuve, and C. Perret, “Reported family aggregation of pancreatic cancer within a population-based case-control study in the Francophone Community in Montreal, Canada,” International Journal of Pancreatology, vol. 10, no. 3-4, pp. 183–196, 1991. View at Google Scholar · View at Scopus
  55. S. S. Hecht, S. G. Carmella, P. G. Foiles, and S. E. Murphy, “Biomarkers for human uptake and metabolic activation of tobacco-specific nitrosamines,” Cancer Research, vol. 54, no. 7, supplement, pp. 1912–7917, 1994. View at Google Scholar · View at Scopus
  56. M. A. Morse, C. X. Wang, S. G. Amin, S. S. Hecht, and F. L. Chung, “Effects of dietary sinigrin or indole-3-carbinol on O6-methylguanine-DNA-transmethylase activity and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced DNA methylation and tumorigenicity in F344 rats,” Carcinogenesis, vol. 9, no. 10, pp. 1891–1895, 1988. View at Google Scholar · View at Scopus
  57. D. Hoffmann, A. Rivenson, R. Abbi, and E. L. Wynder, “A study of tobacco carcinogenesis: effect of the fat content of the diet on the carcinogenic activity of 4-(methylnitrosamino)-1-(3-pyridyl)-1- butanone in F344 rats,” Cancer Research, vol. 53, no. 12, pp. 2758–2761, 1993. View at Google Scholar · View at Scopus
  58. M. Wang, J. L. Abbruzzese, H. Friess et al., “DNA adducts in human pancreatic tissues and their potential role in carcinogenesis,” Cancer Research, vol. 58, no. 1, pp. 38–41, 1998. View at Google Scholar · View at Scopus
  59. M. Voirol, F. Infante, O. Brahime-Reteno, L. Raymond, V. Hollenweger, and E. Loizeau, “Alcohol, tobacco and food consumption in pancreatic diseases. Preliminary results of a study of 1000 cases,” Schweizerische Medizinische Wochenschrift, vol. 110, no. 22, pp. 854–855, 1980. View at Google Scholar
  60. I. Heuch, G. Kvale, B. K. Jacobsen, and E. Bjelke, “Use of alcohol, tobacco and coffee, and risk of pancreatic cancer,” British Journal of Cancer, vol. 48, no. 5, pp. 637–643, 1983. View at Google Scholar · View at Scopus
  61. H. M. Schuller, R. Jorquera, A. Reichert, and A. Castonguay, “Transplacental induction of pancreas tumors in hamsters by ethanol and the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone,” Cancer Research, vol. 53, no. 11, pp. 2498–2501, 1993. View at Google Scholar · View at Scopus
  62. N. Malats, M. Porta, J. M. Corominas, J. L. Piñol, J. Rifà, and F. X. Real, “Ki-ras mutations in exocrine pancreatic cancer: association with clinico-pathological characteristics and with tobacco and alcohol consumption,” International Journal of Cancer, vol. 70, no. 6, pp. 661–667, 1997. View at Publisher · View at Google Scholar
  63. P. D. L. M. Hall, R. E. Wilentz, W. de Klerk, and P. P. C. Bornman, “Premalignant conditions of the pancreas,” Pathology, vol. 34, no. 6, pp. 504–517, 2002. View at Google Scholar · View at Scopus
  64. S. Landi, “Genetic predisposition and environmental risk factors to pancreatic cancer: a review of the literature,” Mutation Research, vol. 681, no. 2-3, pp. 299–307, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. D. C. Whitcomb and C. D. Ulrich II, “Hereditary pancreatitis: new insights, new directions,” Bailliere's Best Practice in Clinical Gastroenterology, vol. 13, no. 2, pp. 253–263, 1999. View at Publisher · View at Google Scholar · View at Scopus
  66. M. D. Finch, N. Howes, I. Ellis et al., “Hereditary pancreatitis and familial pancreatic cancer,” Digestion, vol. 58, no. 6, pp. 564–569, 1997. View at Google Scholar · View at Scopus
  67. J. M. Birch, R. D. Alston, R. J. Q. McNally et al., “Relative frequency and morphology of cancers in carriers of germline TP53 mutations,” Oncogene, vol. 20, no. 34, pp. 4621–4628, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. F. M. Giardiello, J. D. Brensinger, A. C. Tersmette et al., “Very high risk of cancer in familial Peutz-Jeghers syndrome,” Gastroenterology, vol. 119, no. 6, pp. 1447–1453, 2000. View at Google Scholar · View at Scopus
  69. H. T. Lynch, S. J. Lanspa, B. M. Boman et al., “Hereditary nonpolyposis colorectal cancer—lynch syndromes I and II,” Gastroenterology Clinics of North America, vol. 17, no. 4, pp. 679–712, 1988. View at Google Scholar · View at Scopus
  70. H. T. Lynch, R. M. Fusaro, and W. J. Kimberling, “Familial atypical multiple mole-melanoma (FAMMM) syndrome: segregation analysis,” Journal of Medical Genetics, vol. 20, no. 5, pp. 342–344, 1983. View at Google Scholar · View at Scopus
  71. M. Del Chiaro, A. Zerbi, G. Capurso et al., “Familial pancreatic cancer in Italy. Risk assessment, screening programs and clinical approach: a position paper from the Italian Registry,” Digestive and Liver Disease, vol. 42, no. 9, pp. 597–605, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. C. Shi, R. H. Hruban, and A. P. Klein, “Familial pancreatic cancer,” Archives of Pathology and Laboratory Medicine, vol. 133, no. 3, pp. 365–374, 2009. View at Google Scholar · View at Scopus
  73. T. A. Brentnall, “Management strategies for patients with hereditary pancreatic cancer,” Current Treatment Options in Oncology, vol. 6, no. 5, pp. 437–445, 2005. View at Google Scholar · View at Scopus
  74. T. P. Yeo, R. H. Hruban, J. Brody, K. Brune, S. Fitzgerald, and C. J. Yeo, “Assessment of “gene-environment” interaction in cases of familial and sporadic pancreatic cancer,” Journal of Gastrointestinal Surgery, vol. 13, no. 8, pp. 1487–1494, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. S. L. MacLeod and P. Chowdhury, “The genetics of nicotine dependence: relationship to pancreatic cancer,” World Journal of Gastroenterology, vol. 12, no. 46, pp. 7433–7439, 2006. View at Google Scholar · View at Scopus
  76. Y. Lao, N. Yu, F. Kassie, P. W. Villalta, and S. S. Hecht, “Formation and accumulation of pyridyloxobutyl DNA adducts in F344 rats chronically treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and enantiomers of its metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol,” Chemical Research in Toxicology, vol. 20, no. 2, pp. 235–245, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. S. Kadlubar, J. P. Anderson, C. Sweeney et al., “Phenotypic CYP2A6 variation and the risk of pancreatic cancer,” Journal of the Pancreas, vol. 10, no. 3, pp. 263–270, 2009. View at Google Scholar · View at Scopus
  78. A. Rossini, T. D. A. Simo, R. M. Albano, and L. F. R. Pinto, “CYP2A6 polymorphisms and risk for tobacco-related cancers,” Pharmacogenomics, vol. 9, no. 11, pp. 1737–1752, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. H. Bartsch, U. Nair, A. Risch, M. Rojas, H. Wikman, and K. Alexandrov, “Genetic polymorphism of CYP genes, alone or in combination, as a risk modifier of tobacco-related cancers,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 1, pp. 3–28, 2000. View at Google Scholar · View at Scopus
  80. C. Rodriguez-Antona, A. Gomez, M. Karlgren, S. C. Sim, and M. Ingelman-Sundberg, “Molecular genetics and epigenetics of the cytochrome P450 gene family and its relevance for cancer risk and treatment,” Human Genetics, vol. 127, no. 1, pp. 1–17, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. J. Ockenga, A. Vogel, N. Teich, V. Keim, M. P. Manns, and C. P. Strassburg, “UDP glucuronosyltransferase (UGT1A7) gene polymorphisms increase the risk of chronic pancreatitis and pancreatic cancer,” Gastroenterology, vol. 124, no. 7, pp. 1802–1808, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. J. D. Collier, M. K. Bennett, A. Hall, A. R. Cattan, R. Lendrum, and M. F. Bassendine, “Expression of glutathione S-transferases in normal and malignant pancreas: an immunohistochemical study,” Gut, vol. 35, no. 2, pp. 266–269, 1994. View at Google Scholar · View at Scopus
  83. A. B. Ulrich, J. Standop, B. M. Schmied, M. B. Schneider, T. A. Lawson, and P. M. Pour, “Expression of drug-metabolizing enzymes in the pancreas of hamster, mouse, and rat, responding differently to the pancreatic carcinogenicity of BOP,” Pancreatology, vol. 2, no. 6, pp. 519–527, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. A. B. Ulrich, B. M. Schmied, J. Standop et al., “Differences in the expression of glutathione S-transferases in normal pancreas, chronic pancreatitis, secondary chronic pancreatitis, and pancreatic cancer,” Pancreas, vol. 24, no. 3, pp. 291–297, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. E. J. Duell, E. A. Holly, P. M. Bracci, M. Liu, J. K. Wiencke, and K. T. Kelsey, “A population-based, case-control study of polymorphisms in carcinogen-metabolizing genes, smoking, and pancreatic adenocarcinoma risk,” Journal of the National Cancer Institute, vol. 94, no. 4, pp. 297–306, 2002. View at Google Scholar · View at Scopus
  86. R. Lochan, A. K. Daly, H. L. Reeves, and R. M. Charnley, “Genetic susceptibility in pancreatic ductal adenocarcinoma,” British Journal of Surgery, vol. 95, no. 1, pp. 22–32, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. R. L. Milne, W. Greenhalf, C. Murta-Nascimento, F. X. Real, and N. Malats, “The inherited genetic component of sporadic pancreatic adenocarcinoma,” Pancreatology, vol. 9, no. 3, pp. 206–214, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. Y. Lin, K. Yagyu, N. Egawa et al., “An overview of genetic polymorphisms and pancreatic cancer risk in molecular epidemiologic studies,” Journal of Epidemiology, vol. 21, no. 1, pp. 2–12, 2011. View at Publisher · View at Google Scholar
  89. H. Suzuki, J. S. Morris, Y. Li et al., “Interaction of the cytochrome P4501A2, SULT1A1 and NAT gene polymorphisms with smoking and dietary mutagen intake in modification of the risk of pancreatic cancer,” Carcinogenesis, vol. 29, no. 6, pp. 1184–1191, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. R. R. McWilliams, W. R. Bamlet, J. M. Cunningham et al., “Polymorphisms in DNA repair genes, smoking, and pancreatic adenocarcinoma risk,” Cancer Research, vol. 68, no. 12, pp. 4928–4935, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. E. J. Duell, P. M. Bracci, J. H. Moore, R. D. Burk, K. T. Kelsey, and E. A. Holly, “Detecting pathway-based gene-gene and gene-environment interactions in pancreatic cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 6, pp. 1470–1479, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. J. Ockenga, S. Strunck, C. Post et al., “The role of epoxide hydrolase Y113H gene variant in pancreatic diseases,” Pancreas, vol. 38, no. 4, pp. e97–e101, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. R. R. McWilliams, W. R. Bamlet, M. de Andrade, D. N. Rider, J. M. Cunningham, and G. M. Petersen, “Nucleotide excision repair pathway polymorphisms and pancreatic cancer risk: evidence for role of MMS19L,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 4, pp. 1295–1302, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. D. Zhao, D. Xu, X. Zhang et al., “Interaction of cyclooxygenase-2 variants and smoking in pancreatic cancer: a possible role of nucleophosmin,” Gastroenterology, vol. 136, no. 5, pp. 1659–1668, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. B. Mohelnikova-Duchonova, D. Vrana, I. Holcatova, M. Ryska, Z. Smerhovsky, and P. Soucek, “CYP2A13, ADH1B, and ADH1C gene polymorphisms and pancreatic cancer risk,” Pancreas, vol. 39, no. 2, pp. 144–148, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. L. Amundadottir, P. Kraft, R. Z. Stolzenberg-Solomon et al., “Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer,” Nature Genetics, vol. 41, no. 9, pp. 986–990, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. S. K. Low, A. Kuchiba, H. Zembutsu et al., “Genome-wide association study of pancreatic cancer in Japanese population,” PLoS ONE, vol. 5, no. 7, Article ID e11824, 2010. View at Publisher · View at Google Scholar · View at PubMed