Table of Contents
ISRN Algebra
Volume 2011, Article ID 270814, 10 pages
http://dx.doi.org/10.5402/2011/270814
Research Article

𝔛 -Gorenstein Projective Modules

Department of Mathematics, Faculty of Science and Technology of Fez, University S.M. Ben Abdellah Fez, P.O. Box 2202, Morocco

Received 13 May 2011; Accepted 5 July 2011

Academic Editors: H. Chen and J. Mináč

Copyright © 2011 Mohammed Tamekkante. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Auslander and D. A. Buchsbaum, “Homological dimension in Noetherian rings,” Proceedings of the National Academy of Sciences of the United States of America, vol. 42, pp. 36–38, 1956. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. J. P. Serre, “Sur la dimension homologique des anneaux et des modules noethériens,” in Proceedings of the International Symposium on Algebraic Number Theory, pp. 175–189, Science Council of Japan, Tokyo, Japan, 1956. View at Zentralblatt MATH
  3. M. Auslander and M. Bridger, Stable Module Theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, RI, USA, 1969.
  4. M. Auslander, Anneaux de Gorenstein, et Torsion en Algèbre Commutative, Séeminaire d’Algèbre Commutative dirigé par Pierre Samuel, 1966/67. Texte rédigé, d’après des expos és de Maurice Auslander, par Marquerite Mangeney, Christian Peskine et Lucien Szpiro. Ecole Normale Supérieure de Jeunes Filles, Secrétariat Mathématique, Paris, France, 1976, http://www.numdam.org. View at Zentralblatt MATH
  5. E. E. Enochs and O. M. G. Jenda, “Gorenstein injective and projective modules,” Mathematische Zeitschrift, vol. 220, no. 4, pp. 611–633, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. L. W. Christensen, Gorenstein Dimensions, vol. 1747 of Lecture Notes in Mathematics, Springer, Berlin, 2000. View at Publisher · View at Google Scholar
  7. H. Holm, “Gorenstein homological dimensions,” Journal of Pure and Applied Algebra, vol. 189, no. 1–3, pp. 167–193, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. D. Bennis and N. Mahdou, “Strongly Gorenstein projective, injective, and flat modules,” Journal of Pure and Applied Algebra, vol. 210, no. 2, pp. 437–445, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. M. Tamekkante, “Special gorenstein projective modules via a matrix approach,” Arabian Journal for Science and Engineering, vol. 35, no. 2, pp. 241–250, 2010. View at Google Scholar
  10. D. Bennis, N. Mahdou, and K. Ouarghi, “Rings over which all modules are strongly Gorenstein projective,” The Rocky Mountain Journal of Mathematics, vol. 40, no. 3, pp. 749–759, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, vol. 41 of De Grutyter Expositions in Mathematics, de Gruyter, Berlin, Germany, 2006. View at Publisher · View at Google Scholar