Table of Contents
ISRN Mechanical Engineering
Volume 2011, Article ID 291409, 9 pages
http://dx.doi.org/10.5402/2011/291409
Research Article

Mechanical and Thermal Stresses in a FGPM Hollow Cylinder due to Radially Symmetric Loads

1Islamic Azad University, South Tehran Branch, Tehran, Iran
2Department of Mechanical Engineering, Academy of Sciences, Amirkabir University of Technology, Tehran, Iran

Received 25 May 2011; Accepted 21 June 2011

Academic Editor: J. Seok

Copyright © 2011 M. Jabbari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Biot, “Le problème de la consolidation des matières argileuses sous une charge,” Annales de la Societe Scientifique de Bruxelles, vol. B55, pp. 110–113, 1935. View at Google Scholar
  2. M. A. Biot, “General theory of three-dimensional consolidation,” Journal of Applied Physics, vol. 12, no. 2, pp. 155–164, 1941. View at Publisher · View at Google Scholar · View at Scopus
  3. R. De Boer, “Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory,” Applied Mechanics Reviews, vol. 49, no. 4, pp. 201–261, 1996. View at Google Scholar · View at Scopus
  4. E. Detournay and H.-D. A. Cheng, “Fundamentals of poroelasticity,” in Comprehensive Rock Engineering: Principles, Practice & Projects, J. A. Hudson, Ed., pp. 113–171, Pergamon, Oxford, UK, 1993. View at Google Scholar
  5. R. S. Sandhu and E. L. Wilson, “Finite element analysis of seepage in elastic media,” Journal of the Engineering Mechanics Division of the American Society of Civil Engineering, vol. 95, no. 3, pp. 641–652, 1969. View at Google Scholar
  6. E. Detournay and ,A. H.-D. Cheng, “Fundamentals of poroelasticity,” in Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Method, C. Fairhurst, Ed., chapter 5, pp. 113–171, Pergamon, Oxford, UK, 1993. View at Google Scholar
  7. Y. Abousleiman and S. Ekbote, “Solutions for the inclined borehole in a porothermoelastic transversely isotropic medium,” Journal of Applied Mechanics, vol. 72, no. 1, pp. 102–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Y. P. Cheg, “Axismmetric thermal stresses in an anisotropic finite hollow cylinder,” Journal of Thermal Stresses, vol. 6, no. 2–4, pp. 197–205, 1983. View at Google Scholar
  9. B. Bai, “Fluctuation responses of saturated porous media subjected to cyclic thermal loading,” Computers and Geotechnics, vol. 33, no. 8, pp. 396–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Wang and E. Papamichos, “An analytical solution for conductive heat flow and the thermally induced fluid flow around a wellbore in a poroelastic medium,” Water Resource Reserch, vol. 36, no. 5, pp. 3375–3384, 1994. View at Google Scholar
  11. Y. Wang and E. Papamichos, “Thermal effects on fluid flow and hydraulic fracturing from wellbores and cavities in low-permeability formations,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 23, no. 15, pp. 1819–1834, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Ghassemi and Q. Tao, “Influence of coupled chemo-poro-thermoelastic processes on pore pressure and stress distributions around a wellbore in swelling shale,” Journal of Petroleum Science and Engineering, vol. 67, no. 1-2, pp. 57–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Wirth and I. Sobey, “An axisymmetric and fully 3D poroelastic model for the evolution of hydrocephalus,” Mathematical Medicine and Biology, vol. 23, no. 4, pp. 363–388, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. D. Yang and Z. Zhang, “Poroelastic wave equation including the Biot/squirt mechanism and the solid/fluid coupling anisotropy,” Wave Motion, vol. 35, no. 3, pp. 223–245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Arora and S. K. Tomar, “Elastic waves along a cylindrical borehole in a poroelastic medium saturated by two immiscible fluids,” Journal of Earth System Science, vol. 116, no. 3, pp. 225–234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Hamiel, V. Lyakhovsky, and A. Agnon, “Coupled evolution of damage and porosity in poroelastic media: theory and applications to deformation of porous rocks,” Geophysical Journal International, vol. 156, no. 3, pp. 701–713, 2004. View at Google Scholar · View at Scopus
  17. A. Ghassemi, “Stress and pore prepressure disterbution around apressurized ,cooled crack in holw permeability rock,” in Proceedings of the 32nd Workshop on Geothermal Reservoir Engineering Stanford University, SGP-TR-183, Stanford University, Stanford, Calif, USA, January 2007.
  18. H. M. Youssef, “Theory of generalized porothermoelasticity,” International Journal of Rock Mechanics & Mining Sciences, vol. 44, no. 2, pp. 222–227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Jourine, P. P. Valkoo, and A. K. Kronenberg , “Modelling poroelastic hollow cylinderexperiments with realistic boundary conditions,” International Journal for Numerical and Analytical Methods in Gwomechanics, vol. 28, no. 12, pp. 1189–1205, 2004. View at Publisher · View at Google Scholar
  20. M. P. Lutz and R. W. Zimmerman, “Thermal stresses and effective thermal expansion coefficient of a functionally gradient sphere,” Journal of Thermal Stresses, vol. 19, no. 1, pp. 39–54, 1996. View at Google Scholar · View at Scopus
  21. R. W. Zimmerman and M. P. Lutz, “Thermal stresses and thermal expansion in a uniformly heated functionally graded cylinder,” Journal of Thermal Stresses, vol. 22, no. 2, pp. 177–188, 1999. View at Google Scholar · View at Scopus
  22. M. Jabbari, S. Sohrabpour, and M. R. Eslami, “General solution for mechanical and thermal stresses in a functionally graded hollow cylinder due to nonaxisymmetric steady-state loads,” Journal of Applied Mechanics, vol. 79, pp. 493–497, 2002. View at Google Scholar
  23. R. Poultangari, M. Jabbari, and M. R. Eslami, “Functionally graded hollow spheres under non-axisymmetric thermo-mechanical loads,” International Journal of Pressure Vessels and Piping, vol. 85, no. 5, pp. 295–305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Shariyat, S. M. H. Lavasani, and M. Khaghani, “Nonlinear transient thermal stress and elastic wave propagation analyses of thick temperature-dependent FGM cylinders, using a second-order point-collocation method,” Applied Mathematical Modelling, vol. 34, no. 4, pp. 898–918, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. C. F. Lü, W. Q. Chen, and C. W. Lim, “Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies,” Composites Science and Technology, vol. 69, no. 7-8, pp. 1124–1130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. Afsar and H. Sekine, “Inverse problems of material distributions for prescribed apparent fracture toughness in FGM coatings around a circular hole in infinite elastic media,” Composites Science and Technology, vol. 62, no. 7-8, pp. 1063–1077, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. D. G. Zhang and Y. H. Zhou, “A theoretical analysis of FGM thin plates based on physical neutral surface,” Computational Materials Science, vol. 44, no. 2, pp. 716–720, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. A. Fazelzadeh and M. Hosseini, “Aerothermoelastic behavior of supersonic rotating thin-walled beams made of functionally graded materials,” Journal of Fluids and Structures, vol. 23, no. 8, pp. 1251–1264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Ootao and Y. Tanigawa, “Transient thermoelastic problem of functionally graded thick strip due to non uniform heat supply,” Composite Structures, vol. 63, no. 2, pp. 139–146, 2004. View at Google Scholar
  30. M. Jabbari, S. Sohrabpour, and M. R. Eslami, “Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads,” International Journal of Pressure Vessels and Piping, vol. 79, no. 7, pp. 493–497, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Farid, P. Zahedinejad, and P. Malekzadeh, “Three-dimensional temperature dependent free vibration analysis of functionally graded material curved panels resting on two-parameter elastic foundation using a hybrid semi-analytic, differential quadrature method,” Materials and Design, vol. 31, no. 1, pp. 2–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Bagri and M. R. Eslami, “Generalized coupled thermoelasticity of functionally graded annular disk considering the Lord-Shulman theory,” Composite Structures, vol. 83, no. 2, pp. 168–179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. B. A. Shariat and M. R. Eslami, “Buckling of thick functionally graded plates under mechanical and thermal loads,” Composite Structures, vol. 78, no. 3, pp. 433–439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Jabbari, A. Bahtui, and M. R. Eslami, “Axisymmetric mechanical and thermal stresses in thick short length FGM cylinder,” International Journal of Pressure Vessels and Piping, vol. 2009, no. 5, pp. 296–306, 86. View at Google Scholar
  35. M. Thieme, K.-P. Wieters, F. Bergner et al., “Titanium powder sintering for preparation of a porous FGM destined as a skeletal replacement implant,” Materials Science Forum, vol. 308–311, pp. 374–380, 1999. View at Google Scholar