International Scholarly Research Notices

International Scholarly Research Notices / 2011 / Article

Research Article | Open Access

Volume 2011 |Article ID 301816 | 12 pages | https://doi.org/10.5402/2011/301816

Propagation of Plane Waves in a Thermally Conducting Mixture

Academic Editor: Y. Dimakopoulos
Received10 Mar 2011
Accepted04 May 2011
Published16 Aug 2011

Abstract

The governing equations for generalized thermoelasticity of a mixture of an elastic solid and a Newtonian fluid are formulated in the context of Lord-Shulman and Green-Lindsay theories of generalized thermoelasticity. These equations are solved to show the existence of three coupled longitudinal waves and two coupled transverse waves, which are dispersive in nature. Reflection from a thermally insulated stress-free surface is considered for incidence of coupled longitudinal wave. The speeds and reflection coefficients of plane waves are computed numerically for a particular model.

1. Introduction

The soil consists of an assemblage of particles with different sizes and shapes which form a skeleton whose voids are filled by water and air or gas. The word ā€œsoil,ā€ therefore, implies a mixture of assorted mineral grains with various fluids. The first continuum theory of mixtures was proposed by Truesdell [1] and Truesdell and Toupin [2] in terms of the kinematic and thermodynamic variables associated with each constituent of the mixture. Another theory presented by Green and Naghdi [3] uses the kinematic and thermodynamic variables associated with the mixture as a whole. The classical theory of mixtures was discussed by Atkin and Craine [4] and Bowen [5]. Bedford and Drumheller [6] formulated the theories of immiscible and structured mixtures. Various other theories of mixtures were also developed by Muller [7], Dunwoody [8], Krishnaswamy and Batra [9], Iesan [10ā€“12], Rajagopal and Tao [13], and Pompei and Scalia [14].

Many engineering materials, as well as soils, rocks, granular materials, sand, and underground water mixtures may be modeled more realistically by means of micropolar continua. Eringen [15] developed a theory of micropolar mixture of porous media (nonreacting mixture of micropolar elastic solid and a micropolar viscous fluid at a single temperature) to include the rotational degrees of freedom. Eringen [15] also obtained the field equations of a mixture of an elastic solid and a Newtonian fluid as a special case by dropping the micropolar effects. In the present paper, the governing equations for generalized thermoelasticity of mixture of an elastic solid and a Newtonian fluid are formulated in context of Lord-Shulman [16] and Green-Lindsay [17] theories of generalized thermoelasticity. These equations are solved to show the existence of various coupled plane waves. The reflection of these plane waves is studied at thermally insulated stress-free surface and the reflection coefficients are computed and shown graphically with the angle of incidence. Wave propagation in such a media may find its applications in consolidation and oil exploration problems.

2. Equations of Motion

We consider a binary mixture of an elastic solid and a Newtonian fluid at the same temperature where no chemical reaction takes place between the two species of the mixture. According to the last section given in Eringen [15], the equations of motion in a linear isotropic thermoelastic mixture of an elastic solid and Newtonian fluid in absence of external loads are written asī€·šœ†š‘†+2šœ‡š‘†ī€øāˆ‡ī€·āˆ‡ā‹…š®š‘†ī€øāˆ’šœ‡š‘†ī€·āˆ‡Ć—āˆ‡Ć—š®š‘†ī€øī€·Ģ‡š®āˆ’šœ‰Sāˆ’Ģ‡š®š¹ī€øāˆ’ī‚µš‘ š‘‡0+š›½0ī‚¶āˆ‡ī€·š‘‡+š‘”1Ģ‡š‘‡ī€ø=šœŒš‘†Ģˆš®š‘†,ī€·šœ†(2.1)š¹+2šœ‡š¹ī€øāˆ‡ī€·Ģ‡š®āˆ‡ā‹…š¹ī€øāˆ’šœ‡š¹ī€·Ģ‡š®āˆ‡Ć—āˆ‡Ć—š¹ī€øī€·Ģ‡š®+šœ‰š‘†āˆ’Ģ‡š®š¹ī€ø+ī‚µš‘ š‘‡0+š›½0ī‚¶āˆ‡ī€·š‘‡+š‘”1Ģ‡š‘‡ī€ø=šœŒš¹Ģˆš®š¹,ī‚øš‘ ī€·Ģ‡š®(2.2)āˆ‡ā‹…Sāˆ’Ģ‡š®š¹ī€ø+š¾āˆ—š‘‡0ī‚¹ī€ŗš›½āˆ‡š‘‡āˆ’šœŒ0ī€·Ģ‡š®āˆ‡ā‹…š‘†+š‘”0Ī©Ģˆš®š‘†ī€ø+šœŒš¹ī€·Ģ‡š®š›æāˆ‡ā‹…š¹+š‘”0Ī©Ģˆš®š¹ī€øī€»=šœŒš¶0ī€·Ģ‡š‘‡+š‘”0Ģˆš‘‡ī€ø,(2.3) where š®š‘†,š®š¹ are displacement vectors in solid and fluid phase, respectively, and š‘‡ is the temperature variable. The coefficients šœ†š‘†,šœ‡š‘†,š›½0 are the thermoelastic constants for isotropic elastic solids, šœ†š¹,šœ‡š¹ are fluid viscosities, š¾āˆ— is classical Fourier constant, š‘  is the heat generation due to velocity difference, šœ‰ is the momentum generation coefficient due to the velocity difference, š¶0 is specific heat at constant deformation, š‘‡0 is an ambient temperature, š›æ=āˆ’(šœ•šœ“/šœ•šœŒš¹)0, šœ“ is Helmholtzā€™s free energy function, šœŒ,šœŒš‘†,šœŒš¹are the densities of mixture, solid, and fluid in the natural state, superposed dot indicates the temporal derivative, and other symbols have their usual meanings.

The use of symbol Ī©, in (2.3), makes these fundamental equations possible for the two different theories of the generalized thermoelasticity. For the L-S (Lord-Shulman) theory š‘”1=0,Ī©=1 and for G-L (Green-Lindsay) theory š‘”1>0 and Ī©=0. The thermal relaxations š‘”0 and š‘”1 satisfy the inequality š‘”1ā‰„š‘”0ā‰„0 for the G-L theory only.

By introducing the scalar potentials š‘žš‘†,š‘žš¹ and vector potentials š”š‘†,š”š¹ through Helmholtz representation of vector field, we can writeš®š‘†=āˆ‡š‘žš‘†+āˆ‡Ć—š”š‘†,āˆ‡ā‹…š”š‘†š®=0,š¹=āˆ‡š‘žš¹+āˆ‡Ć—š”š¹,āˆ‡ā‹…š”š¹=0.(2.4)

Using (2.4) into (2.1) to (2.3), we obtain the following five equations, that is, three coupled equations in š‘žš‘†,š‘žš¹,š‘‡ and two coupled equations in š”š‘†,š”š¹;š‘21š‘†āˆ‡2š‘žš‘†āˆ’šœ‰š‘†ī€·Ģ‡š‘žš‘†āˆ’Ģ‡š‘žš¹ī€øāˆ’š›½1š‘†ī€·š‘‡+š‘”1Ģ‡š‘‡ī€ø=Ģˆš‘žš‘†,š‘21š¹āˆ‡2Ģ‡š‘žš¹+šœ‰š¹ī€·Ģ‡š‘žš‘†āˆ’Ģ‡š‘žš¹ī€ø+š›½1š¹ī€·š‘‡+š‘”1Ģ‡š‘‡ī€ø=Ģˆš‘žš¹,š¾āˆ—āˆ‡2š‘‡+š‘ āˆ‡2ī€·Ģ‡š‘žš‘†āˆ’Ģ‡š‘žš¹ī€øāˆ’š›½0ī‚€1+š‘”0Ī©šœ•ī‚āˆ‡šœ•š‘”2Ģ‡š‘žš‘†āˆ’š›æī‚€1+š‘”0Ī©šœ•ī‚āˆ‡šœ•š‘”2Ģ‡š‘žš¹=ī‚€1+š‘”0šœ•ī‚Ģ‡š‘šœ•š‘”š‘‡,(2.5)22š‘†āˆ‡2š”š‘†āˆ’šœ‰š‘†ī€·Ģ‡š”š‘†āˆ’Ģ‡š”š¹ī€ø=Ģˆš”š‘†,š‘22š¹āˆ‡2Ģ‡š”š¹+šœ‰š¹ī€·Ģ‡š”š‘†āˆ’Ģ‡š”š¹ī€ø=Ģˆš”š¹,(2.6) where, š‘21š‘†=(šœ†š‘†+2šœ‡š‘†)/šœŒš‘†,š‘22š‘†=šœ‡š‘†/šœŒš‘†,šœ‰š‘†=šœ‰/šœŒš‘†,š›½1š‘†=š›½1/šœŒš‘†,š‘21š¹=(šœ†š¹+2šœ‡š¹)/šœŒš¹,š‘22š¹=šœ‡š¹/šœŒš¹,šœ‰š¹=šœ‰/šœŒš¹,š›½1š¹=š›½1/šœŒš¹,š›½1=š‘ /š‘‡0+š›½0,š›½0=š›½0/š¶0,š›æ=šœŒš›æ/š¶0,š¾āˆ—=š¾āˆ—/šœŒš¶0š‘‡0,š‘ =š‘ /šœŒš¶0.

3. Wave Propagation

In this section, the plane wave propagation in an infinite thermally conducting mixture of elastic solid and Newtonian fluid is studied. In order to solve (2.5), we consider the following form of plane waves propagating in the positive direction of a unit vector š§ī€½š‘žš‘†,š‘žš¹ī€¾=ī‚†,š‘‡š‘žš‘†,š‘žš¹,š‘‡ī‚‡[]expšœ„š‘˜(š§ā‹…š«āˆ’š‘‰š‘”),(3.1) where š‘žš‘†,š‘žš¹,š‘‡ are the constant complex scalar wave amplitudes, āˆššœ„=āˆ’1, š« is the position vector, š‘‰ is the phase velocity in the direction of š§, k is the wave number, and šœ”(=š‘˜š‘‰) is angular frequency. Using the values of š‘žš‘†,š‘žš¹, and š‘‡ from (3.1) into (2.5), we obtain a set of three homogeneous equations in three unknown amplitudes š‘žš‘†,š‘žš¹,š‘‡. After eliminating these three unknowns, we get the following cubic equationĪ“3+š“Ī“2+šµĪ“+š¶=0,(3.2) where Ī“=š‘‰2 and the expressions for š“, šµ, š¶ are given in Appendix A. The three roots š‘‰21,š‘‰22,š‘‰23 of (3.2) correspond to complex speeds of three dispersive coupled longitudinal waves in a thermally conducting mixture of elastic solid and Newtonian fluid for both L-S and G-L theories.

Equation (2.6) can be solved by considering the following form of vector potentials:ī€½š”š‘†,š”š¹ī€¾=ī€½š€š‘†,š€Fī€¾[]expšœ„š‘˜(š§ā‹…š«āˆ’š‘‰š‘”),(3.3) where š€š‘†,š€š¹ are constant complex vector wave amplitudes. With the help of (3.3), (2.6) leads to homogeneous vector equations in š€š‘† and š€š¹. After elimination of š€š‘† and š€š¹, the following quadratic equation in š‘‰2 is obtained:ī€·š‘‰2ī€ø2+īƒ¬šœ„šœ”š‘22š¹īƒ©+šœ„šœ”šœ‰š‘†š‘˜2īƒŖīƒ©+šœ„šœ”šœ‰š¹š‘˜2īƒŖāˆ’š‘22š‘†īƒ­š‘‰2āˆ’īƒ¬šœ„šœ”š‘22š‘†š‘22š¹+šœ„šœ”š‘22š‘†īƒ©šœ‰š¹š‘˜2īƒŖ+šœ”š‘22š¹īƒ©šœ‰š‘†š‘˜2īƒŖīƒ­=0.(3.4) Equation (3.4) gives two roots š‘‰24,š‘‰25, which correspond to complex speeds of two dispersive coupled transverse waves in a thermally conducting mixture of elastic solid and Newtonian fluid. Hence, the analytical solution indicates the existence of five dispersive plane waves in two-dimensional model of a thermally conducting mixture of an elastic solid and a Newtonian fluid for both L-S and G-L theories.

4. Particular Cases

(i)In absence of fluid, (3.2) reduces to the following quadratic equation: šœī…žš‘šī€·š‘‰2ī€ø2āˆ’ī€ŗšœī…žš‘šš‘21š‘†+š¾šœī€»š‘‰2+š‘21š‘†š¾šœ=0,(4.1) which gives complex speeds of two coupled longitudinal waves for both L-S and G-L theories whereas (3.4) reduces to a linear equation which gives the speed of transverse wave. (ii)In absence of thermal effects, the cubic equation (3.2) reduces to the following quadratic equation: ī€·š‘‰2ī€ø2+āŽ”āŽ¢āŽ¢āŽ£šœ„šœ”š‘21š¹āˆ’š‘21š‘†+ī‚€šœ„šœ”šœ‰š‘†+šœ‰š¹ī‚š‘˜2āŽ¤āŽ„āŽ„āŽ¦š‘‰2āˆ’īƒÆšœ”2š‘21š¹īƒ©šœ‰š‘†š‘˜2īƒŖ+šœ„šœ”š‘21š‘†š‘21š¹+šœ„šœ”š‘21š‘†īƒ©šœ‰š¹š‘˜2īƒŖīƒ°=0.(4.2) The roots of (4.2) correspond to the complex phase speeds of two coupled longitudinal waves in a mixture of an elastic solid and a Newtonian fluid.

5. Reflection from Traction-Free Thermally Insulated Surface

We consider the half-space of the medium with x-axis along the thermally insulated stress-free surface and z-axis into the medium. For incident coupled longitudinal waves or coupled transverse waves, there will be five reflected waves into the medium as shown in Figure 1. The required boundary conditions at stress-free thermally insulated surface areš‘”š‘†š‘§š‘§=0,š‘”š‘†š‘§š‘„=0,š‘”š¹š‘§š‘§=0,š‘”š¹š‘§š‘„=0,šœ•š‘‡šœ•š‘§=0.(5.1) Here, š‘”š‘†š‘§š‘§=šœ†š‘†š‘¢š‘†1,1+ī€·šœ†š‘†+2šœ‡š‘†ī€øš‘¢š‘†3,3āˆ’š›½0ī€·š‘‡+š‘”1Ģ‡š‘‡ī€ø,š‘”š‘†š‘§š‘„=šœ‡š‘†ī‚€š‘¢š‘†1,3+š‘¢š‘†3,1ī‚,š‘”š¹š‘§š‘§=šœ†š¹Ģ‡š‘¢š¹1,1+ī€·šœ†š¹+2šœ‡š¹ī€øĢ‡š‘¢š¹3,3,š‘”š¹š‘§š‘„=šœ‡š¹ī‚€Ģ‡š‘¢š¹1,3+Ģ‡š‘¢š¹3,1ī‚.(5.2)

The appropriate potentials required to satisfy the above boundary conditions are š‘žš‘†=š“0ī€ŗexpšœ„š‘˜1ī€·sinšœƒ0š‘„āˆ’cosšœƒ0š‘§ī€øāˆ’šœ„šœ”1š‘”ī€»ī€½š“+Ī£š‘–ī€ŗexpšœ„š‘˜š‘–ī€·sinšœƒš‘–š‘„+cosšœƒš‘–š‘§ī€øāˆ’šœ„šœ”š‘–š‘”š‘žī€»ī€¾,(š‘–=1,2,3),š¹=šœ‰1š“0ī€ŗexpšœ„š‘˜1ī€·sinšœƒ0š‘„āˆ’cosšœƒ0š‘§ī€øāˆ’šœ„šœ”1š‘”ī€»ī€½šœ‰+Ī£š‘–š“š‘–ī€ŗexpšœ„š‘˜š‘–ī€·sinšœƒš‘–š‘„+cosšœƒš‘–š‘§ī€øāˆ’šœ„šœ”š‘–š‘”ī€»ī€¾,(š‘–=1,2,3),š‘‡=šœ‚1š“0ī€ŗexpšœ„š‘˜1ī€·sinšœƒ0š‘„āˆ’cosšœƒ0š‘§ī€øāˆ’šœ„šœ”1š‘”ī€»ī€½šœ‚+Ī£š‘–š“š‘–ī€ŗexpšœ„š‘˜š‘–ī€·sinšœƒš‘–š‘„+cosšœƒš‘–š‘§ī€øāˆ’šœ„šœ”š‘–š‘”š‘ˆī€»ī€¾,(š‘–=1,2,3),š‘†=šµ0ī€ŗexpšœ„š‘˜4ī€·sinšœƒ0š‘„āˆ’cosšœƒ0š‘§ī€øāˆ’šœ„šœ”4š‘”ī€»ī€½š“+Ī£š‘—ī€ŗexpšœ„š‘˜š‘—ī€·sinšœƒš‘—š‘„+cosšœƒš‘—š‘§ī€øāˆ’šœ„šœ”š‘—š‘”š‘ˆī€»ī€¾,(š‘—=4,5),š¹=šœ‚4šµ0ī€ŗexpšœ„š‘˜4ī€·sinšœƒ0š‘„āˆ’cosšœƒ0š‘§ī€øāˆ’šœ„šœ”4š‘”ī€»ī€½šœ‚+Ī£š‘—š“š‘—ī€ŗexpšœ„š‘˜š‘—ī€·sinšœƒš‘—š‘„+cosšœƒš‘—š‘§ī€øāˆ’šœ„šœ”š‘—š‘”,ī€»ī€¾(š‘—=4,5).(5.3) Here š“0,š“1,š“2,š“3,šµ0,š“4 and š“5 are the amplitude of incident coupled longitudinal I (CL I), reflected coupled longitudinal I (CL I), reflected coupled longitudinal II (CL II), reflected coupled longitudinal III (CL III), incident coupled transverse I (CT I), reflected coupled transverse I (CT I) and reflected coupled transverse II (CT II) waves, respectively, where šµ0=0 for incident coupled longitudinal I (CL I) wave, š“0=0 for incident coupled transverse I (CT I) wave, andšœ‰š‘–=šœ„šœ”š›½1š‘†ī‚€šœ‰š‘†/š‘˜2ī‚āˆ’š›½1š¹ī‚€š‘‰š‘–2āˆ’š‘21š‘†ī‚€+šœ„šœ”šœ‰š‘†/š‘˜2ī‚ī‚āˆ’šœ„šœ”š›½1š¹ī‚€šœ‰š‘†/š‘˜2ī‚āˆ’š›½1š‘†ī‚€š‘‰š‘–2+šœ„šœ”š‘21š¹ī‚€+šœ„šœ”šœ‰š‘†/š‘˜2šœ‚ī‚ī‚,(š‘–=1,2,3),š‘–=šœ„šœ”šœ‰š¹ī‚€ī€·š‘ /1āˆ’šœ”šœ0Ī©ī€ø+š›æī‚āˆ’š‘˜2ī‚€ī€·š‘ /1āˆ’šœ”šœ0Ī©ī€øāˆ’š›½0š‘‰ī‚ī‚€š‘–2+šœ„šœ”š‘21š¹ī‚€+šœ„šœ”šœ‰š¹/š‘˜2ī‚ī‚ī‚€šœš‘šī…žāˆ’ī‚€š¾āˆ—/šœš‘›š‘‰š‘–2š‘‰ī‚ī‚ī‚€š‘–2+šœ„šœ”š‘21š¹ī‚€+šœ„šœ”šœ‰š¹/š‘˜2+ī‚ī‚š›½1š¹šœš‘šī‚€ī€·ī€·š‘ /1āˆ’šœ”šœ0Ī©+ī€øī€øš›æī‚,šœ‚(š‘–=1,2,3),š‘—=ī‚€šœ„šœ”šœ‰š¹/š‘˜2ī‚ī€·š‘‰š‘—2+šœ„šœ”š‘22š¹ī€øī‚€+šœ„šœ”šœ‰š¹/š‘˜2ī‚,(š‘—=4,5),(5.4) and the relations between angles of incidence and reflection are given assinšœƒ0ī€·š‘1orš‘4ī€ø=sinšœƒ1š‘1=sinšœƒ2š‘2=sinšœƒ3š‘3=sinšœƒ4š‘4=sinšœƒ5š‘5,(5.5) and, š‘‰š‘—āˆ’1=š‘š‘—āˆ’1āˆ’šœ„šœ”āˆ’1š‘žš‘—, where š‘š‘— and š‘žš‘—, (š‘— = 1,2,ā€¦,5) are real phase speeds and attenuations of coupled longitudinal and transverse waves.

Using the appropriate potentials given by (5.3) with the required boundary conditions (5.1), the following nonhomogeneous system of five equations is obtainedĪ£š‘Žš‘–š‘—š‘š‘—=š‘š‘–,(š‘–,š‘—=1,2,ā€¦,5),(5.6) where š‘Žš‘–š‘—,š‘š‘–, and š‘š‘— are given in Appendix B.

6. Numerical Results and Discussion

In this section, the complex absolutes of phase speeds and reflection coefficients are computed with the following physical constants at š‘‡0=293āˆ˜K,šœ†š‘†=7.59Ɨ109Nmāˆ’2, šœ‡š‘†=1.89Ɨ109Nmāˆ’2,šœ†š¹=2.14Ɨ109Nmāˆ’2, šœ‡š¹=0.45Ɨ109Nmāˆ’2,šœŒš‘†=2192Kgmāˆ’3,šœŒš¹=1010Kgmāˆ’3, š¶0=96.3JKgāˆ’1Kāˆ’1, š¾āˆ—=2.51Wmāˆ’1Kāˆ’1, š‘ =0.021J, šœ‰=750Kgmāˆ’3sāˆ’1, š‘”0=0.005š‘ ,š‘”1=0.006š‘ ,š›½0=0.0005,š›æ=0.0001,š‘›=0.15.

The densities of solid, fluid, and mixture are related as šœŒ=(1āˆ’š‘›)šœŒš‘†+š‘›šœŒš¹, where š‘› is porosity of the mixture.

Numerical computations of phase speeds and reflection coefficients are restricted to the particular case of Lord-Shulman theory only. The phase speeds of the coupled waves are shown graphically in Figure 2 for the range 5Hzā‰¤šœ”ā‰¤50Hz of frequency. It is observed that the phase speeds of all coupled longitudinal waves increase with the increase in frequency. In absence of thermal effects, the phase speed of CL I wave decreases at each value of frequency, whereas the phase speed of CL II increases. The wave CL III will disappear in absence of thermal parameters. The phase speeds of coupled transverse waves (CT I and CT II) remain unaffected by thermal effects.

Reflection coefficients are computed for incident CL I wave only. The reflection coefficients of coupled longitudinal waves are shown graphically in Figure 3 against the angle of incidence. The reflection coefficients of CL I and CL II waves change with the increase in angle of incidence. The comparison of solid and dotted curves shows the effects of thermal parameters on these coefficients. The reflected CL III wave will disappear in absence of thermal effects. The reflection coefficients of CT I and CT II waves also change with the increase in angle of incidence. These waves are also affected by thermal parameters as shown in Figure 4.

7. Conclusions

The generalized thermoelasticity of a mixture of an elastic solid and a Newtonian fluid is developed in accordance with Lord-Shulman and Green-Lindsay theories. The solutions of governing equations suggest that there will exist three coupled longitudinal waves and two coupled transverse waves in the present model. From numerical results, it is observed that the phase speeds of coupled waves increase with the increase in frequency. The presence of thermal parameters affects the phase speeds of coupled longitudinal waves only. Reflection coefficients of all reflected coupled waves are affected significantly by thermal disturbances in the material.

Appendices

A. Expressions for š“, šµ, and š¶

ī‚ƒš“=šœ„šœ”š‘21š¹šœī…žš‘šāˆ’š‘21š‘†šœī…žš‘š+šœ„šœ”šœī…žš‘šī‚€ī‚€šœ‰š‘†+šœ‰š¹ī‚/š‘˜2ī‚āˆ’š¾šœ+š‘Ž2š›½š¹1šœš‘š+ī€·š‘Ž1+š‘Ž2ī€øš›½š‘†1šœš‘š,ī‚„šœī…žš‘šīƒ¬šµ=āˆ’šœ„šœ”š¾šœīƒÆš‘21š¹+īƒ©šœ‰š¹š‘˜2īƒŖīƒ°āˆ’š‘21š‘†īƒÆšœ„šœ”š‘21š¹šœī…žš‘šīƒ©+šœ„šœ”šœ‰š¹š‘˜2īƒŖšœī…žš‘šāˆ’š¾šœ+š‘Ž2š›½š¹1šœš‘šīƒ°īƒ©+šœ„šœ”šœ‰š‘†š‘˜2īƒŖī‚†šœ„šœ”š‘21š¹šœī…žš‘šāˆ’š¾šœāˆ’š‘Ž1š›½š¹1šœš‘šī‚‡+šœ„šœ”š›½š‘†1šœš‘šīƒÆš‘Ž2š‘21š¹+š‘Ž1š‘21š¹+š‘Ž1īƒ©šœ‰š¹š‘˜2īƒŖīƒ°īƒ­/šœī…žš‘š,ī‚ƒš¶=šœ„šœ”š‘21š‘†š¾šœī‚†š‘21š¹+ī‚€šœ‰š¹/š‘˜2ī‚ī‚‡+šœ”2š¾šœš‘21š¹ī‚€šœ‰š‘†/š‘˜2ī‚ī‚„šœī…žš‘š,(A.1) and, š‘Ž1=š‘ āˆ—āˆ’š›½0, š‘Ž2=š‘ āˆ—+š›æ, š‘ āˆ—=š‘ /(1āˆ’šœ„šœ”š‘”0Ī©), š¾šœ=š¾āˆ—/(š‘”0Ī©+šœ„/šœ”), šœš‘š=1āˆ’šœ„šœ”š‘”1, šœī…žš‘š=(1āˆ’šœ„šœ”š‘”0)/(1āˆ’šœ„šœ”š‘”0Ī©).

B. Expressions for š‘Žš‘–š‘—,š‘š‘–, and š‘š‘—

š‘Ž1š‘–=š‘˜2š‘–īƒ¬šœ†š‘†+2šœ‡š‘†cos2šœƒš‘–+š›½0ī€·1āˆ’šœ„šœ”š‘–šœ1ī€øīƒ©šœ‚š‘–š‘˜2š‘–š‘ŽīƒŖīƒ­,(š‘–=1,2,3),1š‘—=2š‘˜2š‘—šœ‡š‘†sinšœƒš‘—cosšœƒš‘—š‘Ž(š‘—=4,5),2š‘–=āˆ’š‘˜2š‘–sinšœƒš‘–cosšœƒš‘–š‘Ž,(š‘–=1,2,3),2š‘—=š‘˜2š‘—cos2šœƒš‘—,š‘Ž(š‘—=4,5),3š‘–=š‘˜2š‘–šœ”š‘–šœ‰š‘–ī€·šœ†š¹+2šœ‡š¹cos2šœƒš‘–ī€øš‘Ž,(š‘–=1,2,3),3š‘—=2š‘˜2š‘—šœ”š‘—šœ‚š‘—šœ‡š¹sinšœƒš‘—cosšœƒš‘—š‘Ž,(š‘—=4,5),4š‘–=2š‘˜2š‘–šœ”š‘–šœ‰š‘–sinšœƒš‘–cosšœƒš‘–š‘Ž,(š‘–=1,2,3),4š‘—=āˆ’š‘˜2š‘—šœ”š‘—šœ‚š‘—cos2šœƒš‘—š‘Ž,(š‘—=4,5),5š‘–=š‘˜š‘–šœ‚š‘–cosšœƒš‘–,š‘Ž(š‘–=1,2,3),5š‘—=0,(š‘—=4,5),(B.1) and (š‘Ž) for incident CL I wave (šœƒ0=šœƒ1),š‘1=āˆ’š‘˜21īƒ¬šœ†š‘†+2šœ‡š‘†cos2šœƒ0+š›½0ī€·1āˆ’šœ„šœ”1šœ1ī€øīƒ©šœ‚1š‘˜21,š‘īƒŖīƒ­2=āˆ’š‘˜21sinšœƒ0cosšœƒ0,š‘3=āˆ’š‘˜21šœ”1šœ‰1ī€·šœ†š¹+2šœ‡š¹cos2šœƒ0ī€ø,š‘4=2š‘˜21šœ”1šœ‰1sinšœƒ0cosšœƒ0,š‘5=š‘˜1šœ‚1cosšœƒ0,š‘1=š“1š“0,š‘2=š“2š“0,š‘3=š“3š“0,š‘4=š“4š“0,š‘5=š“5š“0(B.2)(š‘) for incident CT I wave (šœƒ0=šœƒ4),š‘1=2š‘˜24šœ‡š‘†sinšœƒ0cosšœƒ0,š‘2=āˆ’š‘˜24cos2šœƒ0,š‘3=2š‘˜24šœ”4šœ‚4šœ‡š¹sinšœƒ0cosšœƒ0,š‘4=š‘˜24šœ”4šœ‚4cos2šœƒ0,š‘5š‘=0,1=š“1šµ0,š‘2=š“2šµ0,š‘3=š“3šµ0,š‘4=š“4šµ0,š‘5=š“5šµ0.(B.3) Here, the amplitude ratios š‘1,š‘2,š‘3,š‘4, and š‘5 correspond to reflected CL I wave, CL II wave, CL III wave, CT I wave, and CT II wave, respectively.

References

  1. C. Truesdell, ā€œMechanical basis of diffusion,ā€ The Journal of Chemical Physics, vol. 37, pp. 2336ā€“2344, 1962. View at: Publisher Site | Google Scholar
  2. C. Truesdell and R. A. Toupin, ā€œThe classical field theories,ā€ in Encyclopedia of Physics, S. Flugge, Ed., vol. III/I, pp. 226ā€“793, Springer, Berlin, Germany, 1960. View at: Google Scholar
  3. A. E. Green and P. M. Naghdi, ā€œOn basic equations for mixtures,ā€ The Quarterly Journal of Mechanics and Applied Mathematics, vol. 22, pp. 427ā€“438, 1969. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  4. R. J. Atkin and R. E. Craine, ā€œContinuum theories of mixtures: basic theory and historical development,ā€ The Quarterly Journal of Mechanics and Applied Mathematics, vol. 29, no. 2, pp. 209ā€“244, 1976. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  5. R. M. Bowen, ā€œTheory of mixtures,ā€ in Continuum Physics, A. C. Eringen, Ed., vol. 3, pp. 1ā€“317, Academic Press, New York, NY, USA, 1976. View at: Google Scholar
  6. A. Bedford and D. S. Drumheller, ā€œTheories of immiscible and structured mixtures,ā€ International Journal of Engineering Science, vol. 21, no. 8, pp. 863ā€“960, 1983. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  7. I. Muller, ā€œA thermoelastic theory of mixture of fluids,ā€ Archive for Rational Mechanics and Analysis, vol. 43, pp. 45ā€“61, 1971. View at: Google Scholar
  8. N. T. Dunwoody, ā€œA thermomechanical theory of diffusion in solid-fluid mixtures,ā€ Archive for Rational Mechanics and Analysis, vol. 38, no. 5, pp. 348ā€“371, 1970. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  9. S. Krishnaswamy and R.C. Batra, ā€œA thermomechanical theory od solid-fluid mixtures,ā€ Mathematics and Mechanics of Solids, vol. 2, pp. 143ā€“151, 1997. View at: Google Scholar
  10. D. Iesan, ā€œOn the theory of mixtures of elastic solids,ā€ Journal of Elasticity, vol. 35, no. 1–3, pp. 251ā€“268, 1994. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  11. D. Iesan, ā€œA theory of mixtures with different constituent temperatures,ā€ Journal of Thermal Stresses, vol. 20, no. 2, pp. 147ā€“167, 1997. View at: Publisher Site | Google Scholar | MathSciNet
  12. D. Iesan, ā€œOn the theory of viscoelastic mixtures,ā€ Journal of Thermal Stresses, vol. 27, no. 12, pp. 1125ā€“1148, 2004. View at: Publisher Site | Google Scholar | MathSciNet
  13. K. R. Rajagopal and L. Tao, Mechanics of Mixtures, vol. 35 of Series on Advances in Mathematics for Applied Sciences, World Scientific, River Edge, NJ, USA, 1995.
  14. A. Pompei and A. Scalia, ā€œOn the dynamic theory of mixtures of thermoelastic solids,ā€ Journal of Thermal Stresses, vol. 22, no. 1, pp. 23ā€“34, 1999. View at: Publisher Site | Google Scholar | MathSciNet
  15. A. C. Eringen, ā€œMicropolar mixture theory of porous media,ā€ Journal of Applied Physics, vol. 94, pp. 4184ā€“4190, 2003. View at: Publisher Site | Google Scholar
  16. H. Lord and Y. Shulman, ā€œA generalized dynamical theory of thermoelasticity,ā€ Journal of the Mechanics and Physics of Solids, vol. 15, pp. 299ā€“309, 1967. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  17. A. E. Green and K. A. Lindsay, ā€œThermoelasticity,ā€ Journal of Elasticity, vol. 2, pp. 1ā€“7, 1972. View at: Publisher Site | Google Scholar | Zentralblatt MATH

Copyright © 2011 Baljeet Singh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

455Ā Views | 320Ā Downloads | 0Ā Citations
 PDF  Download Citation  Citation
 Download other formatsMore
 Order printed copiesOrder