Abstract

A formula for computation of the bivariate Poincarรฉ series ๐’ซ๐‘‘(๐‘ง,๐‘ก) for the algebra of covariants of binary ๐‘‘-form is found.

1. Introduction

Let ๐‘‰๐‘‘ be the complex vector space of binary forms of degree ๐‘‘ endowed with the natural action of the special linear group ๐บ=SL(2,โ„‚). Consider the corresponding action of the group ๐บ on the coordinate rings โ„‚[๐‘‰๐‘‘] and โ„‚[๐‘‰๐‘‘โŠ•โ„‚2]. Denote by โ„๐‘‘=โ„‚[๐‘‰๐‘‘]๐บ and by ๐’ž๐‘‘=โ„‚[๐‘‰๐‘‘โŠ•โ„‚2]๐บ the subalgebras of ๐บ-invariant polynomial functions. In the language of classical invariant theory, the algebras โ„๐‘‘ and ๐’ž๐‘‘ are called the algebra of invariants and the algebra of covariants for the binary form of degree ๐‘‘, respectively. The algebra ๐’ž๐‘‘ is a finitely generated bigraded algebra: ๐’ž๐‘‘=๎€ท๐’ž๐‘‘๎€ธ0,0+๎€ท๐’ž๐‘‘๎€ธ1,0๎€ท๐’ž+โ‹ฏ+๐‘‘๎€ธ๐‘–,๐‘—+โ‹ฏ,(1.1) where each subspace (๐’ž๐‘‘)๐‘–,๐‘— of covariants of degree ๐‘– and order ๐‘— is finite dimensional. The formal power series ๐’ซ๐‘‘(๐‘ง,๐‘ก)โˆˆโ„ค[[๐‘ง,๐‘ก]],๐’ซ๐‘‘(๐‘ง,๐‘ก)=โˆž๎“๐‘–,๐‘—=0๎‚€๎€ท๐’ždim๐‘‘๎€ธ๐‘–,๐‘—๎‚๐‘ง๐‘–๐‘ก๐‘—,(1.2) is called the bivariate Poincarรฉ series of the algebra of covariants ๐’ž๐‘‘. It is clear that the series ๐’ซ๐‘‘(๐‘ง,0) is the Poincarรฉ series of the algebra โ„๐‘‘ and the series ๐’ซ๐‘‘(๐‘ง,1) is the Poincarรฉ series of the algebra ๐’ž๐‘‘ with respect to the usual grading of the algebras under degree. The finitely generation of the algebra of covariants implies that its bivariate Poincarรฉ series is the power series expansion of a rational function of two variables ๐‘ง,๐‘ก. We consider here the problem of computing efficiently this rational function.

Calculating the Poincarรฉ series of the algebras of invariants and covariants was an important object of research in invariant theory in the 19th century. For the cases ๐‘‘โ‰ค10, ๐‘‘=12 the series ๐’ซ๐‘‘(๐‘ง,๐‘ก) were calculated by Sylvester, see in [1, 2] the big tables of ๐’ซ๐‘‘(๐‘ง,๐‘ก), named them as generating functions for covariants, reduced form. All those calculations are correct up to ๐‘‘=6.

Relatively recently, Springer [3] found an explicit formula for computing the Poincarรฉ series of the algebra of invariants โ„๐‘‘. In the paper we have proved a Cayley-Sylvester-type formula for calculating of dim(๐’ž๐‘‘)๐‘–,๐‘— and a Springer-type formula for calculation of ๐’ซ๐‘‘(๐‘ง,๐‘ก). By using the formula, the bivariate Poincarรฉ series ๐’ซ๐‘‘(๐‘ง,๐‘ก) is calculated for ๐‘‘โ‰ค20.

2. Cayley-Sylvester-Type Formula for dim(๐’ž๐‘‘)๐‘–,๐‘—

To begin, we give a proof of the Cayley-Sylvester-type formula for the dimension of the graded component (๐’ž๐‘‘)๐‘–,๐‘—.

Let ๐‘‰๐‘‘=โŸจ๐‘ฃ0,๐‘ฃ1,โ€ฆ,๐‘ฃ๐‘‘โŸฉ and dim๐‘‰๐‘‘=๐‘‘+1 be standard irreducible representation of the Lie algebra ๐”ฐ๐”ฉ2. The basis elements ๎€ท0100๎€ธ,๎€ท0010๎€ธ, ๎€ท100โˆ’1๎€ธ of the algebra ๐”ฐ๐”ฉ2 act on ๐‘‰๐‘‘ by the derivations ๐ท1,๐ท2,๐ธ: ๐ท1๎€ท๐‘ฃ๐‘–๎€ธ=๐‘–๐‘ฃ๐‘–โˆ’1,๐ท2๎€ท๐‘ฃ๐‘–๎€ธ=(๐‘‘โˆ’๐‘–)๐‘ฃ๐‘–+1๎€ท๐‘ฃ,๐ธ๐‘–๎€ธ=(๐‘‘โˆ’2๐‘–)๐‘ฃ๐‘–.(2.1) The action of ๐”ฐ๐”ฉ2 is extended to an action on the symmetrical algebra ๐‘†(๐‘‰๐‘‘) in the natural way.

Let ๐”ฒ2 be the maximal unipotent subalgebra of ๐”ฐ๐”ฉ2. The algebra ๐’ฎ๐‘‘, defined by ๐’ฎ๐‘‘๎€ท๐‘‰โˆถ=๐‘†๐‘‘๎€ธ๐”ฒ2=๎€ฝ๎€ท๐‘‰๐‘ฃโˆˆ๐‘†๐‘‘๎€ธโˆฃ๐ท1๎€พ,(๐‘ฃ)=0(2.2) is called the algebra of semi-invariants of the binary form of degree ๐‘‘. For any element ๐‘ฃโˆˆ๐’ฎ๐‘‘, a natural number ๐‘  is called the order of the element ๐‘ฃ if the number ๐‘  is the smallest natural number such that ๐ท๐‘ 2(๐‘ฃ)โ‰ 0,๐ท2๐‘ +1(๐‘ฃ)=0.(2.3) It is clear that any semi-invariant ๐‘ฃโˆˆ๐’ฎ๐‘‘ of order ๐‘– is the highest weight vector for an irreducible ๐”ฐ๐”ฉ2-module of the dimension ๐‘–+1 in ๐‘†(๐‘‰๐‘‘).

The classical theorem [4] of Roberts implies an isomorphism of the algebra of covariants and the algebra of semi-invariants. Furthermore, the order is preserved through the isomorphism. Thus, it is enough to compute the Poincarรฉ series of the algebra ๐’ฎ๐‘‘.

The algebra ๐‘†(๐‘‰๐‘‘) is โ„•-graded ๐‘†๎€ท๐‘‰๐‘‘๎€ธ=๐‘†0๎€ท๐‘‰๐‘‘๎€ธ+๐‘†1๎€ท๐‘‰๐‘‘๎€ธ+โ‹ฏ+๐‘†๐‘–๎€ท๐‘‰๐‘‘๎€ธ+โ‹ฏ,(2.4) and each ๐‘†๐‘–(๐‘‰๐‘‘) is a completely reducible representation of the Lie algebra ๐”ฐ๐”ฉ2. Thus, the following decomposition holds ๐‘†๐‘–๎€ท๐‘‰๐‘‘๎€ธโ‰…๐›พ๐‘‘(๐‘–,0)๐‘‰0+๐›พ๐‘‘(๐‘–,1)๐‘‰1+โ‹ฏ+๐›พ๐‘‘(๐‘–,๐‘‘โ‹…๐‘›)๐‘‰๐‘‘โ‹…๐‘–,(โˆ—) here ๐›พ๐‘‘(๐‘–,๐‘—) is the multiplicity of the representation ๐‘‰๐‘— in the decomposition of ๐‘†๐‘–(๐‘‰๐‘‘). On the other hand, the multiplicity ๐›พ๐‘‘(๐‘–,๐‘—) of the representation ๐‘‰๐‘— is equal to the number of linearly independent homogeneous semi-invariants of degree ๐‘– and order ๐‘— for the binary ๐‘‘-form. This argument proves the following.

Lemma 2.1. ๎€ท๐’ždim๐‘‘๎€ธ๐‘–,๐‘—=๐›พ๐‘‘(๐‘–,๐‘—).(2.5)

The set of weights (eigenvalues of the operator ๐ธ) of a representation ๐‘Š denote by ฮ›๐‘Š, in particular, ฮ›๐‘‰๐‘‘={โˆ’๐‘‘,โˆ’๐‘‘+2,โ€ฆ,๐‘‘โˆ’2,๐‘‘}.

A formal sum ๎“Char(๐‘Š)=๐‘˜โˆˆฮ›๐‘Š๐‘›๐‘Š(๐‘˜)๐‘ž๐‘˜,(2.6) is called the character of a representation ๐‘Š, here ๐‘›๐‘Š(๐‘˜) denotes the multiplicity of the weight ๐‘˜โˆˆฮ›๐‘Š. Since, the multiplicity of any weight of the irreducible representation ๐‘‰๐‘‘ is equal to 1, we have ๎€ท๐‘‰Char๐‘‘๎€ธ=๐‘žโˆ’๐‘‘+๐‘žโˆ’๐‘‘+2+โ‹ฏ+๐‘ž๐‘‘โˆ’2+๐‘ž๐‘‘.(2.7)

The character Char(๐‘†๐‘›(๐‘‰๐‘‘)) of the representation ๐‘†๐‘›(๐‘‰๐‘‘) equals ๐ป๐‘›๎€ท๐‘žโˆ’๐‘‘,๐‘žโˆ’๐‘‘+2,โ€ฆ,๐‘ž๐‘‘๎€ธ,(2.8) (see [5]), where ๐ป๐‘›(๐‘ฅ0,๐‘ฅ1,โ€ฆ,๐‘ฅ๐‘‘) is the complete symmetrical function ๐ป๐‘›๎€ท๐‘ฅ0,๐‘ฅ1,โ€ฆ,๐‘ฅ๐‘‘๎€ธ=๎“|๐›ผ|=๐‘›๐‘ฅ๐›ผ00๐‘ฅ๐›ผ11โ‹ฏ๐‘ฅ๐›ผ๐‘‘๐‘‘๎“,|๐›ผ|=๐‘–๐›ผ๐‘–.(2.9)

By replacing ๐‘ฅ๐‘˜ with ๐‘ž๐‘‘โˆ’2๐‘˜, ๐‘˜=0,โ€ฆ,๐‘‘, we obtain the specialized expression for Char(๐‘†๐‘›(๐‘‰๐‘‘)): ๎€ท๐‘†Char๐‘›๎€ท๐‘‰๐‘‘=๎“๎€ธ๎€ธ|๐›ผ|=๐‘›๎€ท๐‘ž๐‘‘๎€ธ๐›ผ0๎€ท๐‘ž๐‘‘โˆ’2โ‹…1๎€ธ๐›ผ1โ‹ฏ๎€ท๐‘ž๐‘‘โˆ’2๐‘‘๎€ธ๐›ผ๐‘‘=๎“|๐›ผ|=๐‘›๐‘ž๐‘‘๐‘›โˆ’2(๐›ผ1+2๐›ผ2+โ‹ฏ+๐‘‘๐›ผ๐‘‘)=๐‘‘๐‘›๎“๐‘˜=โˆ’๐‘‘๐‘›๐œ”๐‘‘๎‚€๐‘›,๐‘‘๐‘›โˆ’๐‘˜2๎‚๐‘ž๐‘˜,(2.10) here ๐œ”๐‘‘(๐‘›,(๐‘‘๐‘›โˆ’๐‘˜)/2) is the number nonnegative integer solutions of the equation ๐›ผ1+2๐›ผ2+โ‹ฏ+๐‘‘๐›ผ๐‘‘=๐‘‘๐‘›โˆ’๐‘˜2,(2.11) on the assumption that ๐›ผ0+๐›ผ1+โ‹ฏ+๐›ผ๐‘‘=๐‘›. In particular, the coefficient of ๐‘ž0 (the multiplicity of zero weight ) is equal to ๐œ”๐‘‘(๐‘›,๐‘‘๐‘›/2), and the coefficient of ๐‘ž1 is equal to ๐œ”๐‘‘(๐‘›,(๐‘‘๐‘›โˆ’1)/2).

On the other hand, the decomposition (*) implies the equality for the characters: ๎€ท๐‘†Char๐‘›๎€ท๐‘‰๐‘‘๎€ธ๎€ธ=๐›พ๐‘‘๎€ท๐‘‰(๐‘›,0)Char0๎€ธ+๐›พ๐‘‘๎€ท๐‘‰(๐‘›,1)Char1๎€ธ+โ‹ฏ+๐›พ๐‘‘๎€ท๐‘‰(๐‘›,๐‘‘๐‘›)Char๐‘‘๐‘›๎€ธ.(2.12) We can summarize what we have shown so far in the following.

Theorem 2.2. ๎€ท๐’ždim๐‘‘๎€ธ๐‘–,๐‘—=๐œ”๐‘‘๎‚ต๐‘–,๐‘‘๐‘–โˆ’๐‘—2๎‚ถโˆ’๐œ”๐‘‘๎‚ต๐‘–,๐‘‘๐‘–โˆ’(๐‘—+2)2๎‚ถ.(2.13)

Proof. The weight ๐‘— appears once in any representation ๐‘‰๐‘˜, for ๐‘˜=๐‘—mod2,๐‘˜โ‰ฅ๐‘—. Therefore ๐œ”๐‘‘๎‚ต๐‘–,๐‘‘๐‘–โˆ’๐‘—2๎‚ถ=๐›พ๐‘‘(๐‘–,๐‘—)+๐›พ๐‘‘(๐‘–,๐‘—+2)+โ‹ฏ+๐›พ๐‘‘(๐‘–,๐‘—+4)+โ‹ฏ.(2.14) Similarly, ๐œ”๐‘‘๎‚ต๐‘–,๐‘‘๐‘–โˆ’(๐‘—+2)2๎‚ถ=๐›พ๐‘‘(๐‘–,๐‘—+2)+๐›พ๐‘‘(๐‘–,๐‘—+4)+โ‹ฏ+๐›พ๐‘‘(๐‘–,๐‘—+6)+โ‹ฏ.(2.15) Thus, ๐œ”๐‘‘๎‚ต๐‘–,๐‘‘๐‘–โˆ’๐‘—2๎‚ถโˆ’๐œ”๐‘‘๎‚ต๐‘–,๐‘‘๐‘–โˆ’(๐‘—+2)2๎‚ถ=๐›พ๐‘‘(๐‘–,๐‘—).(2.16) By using Lemma 2.1 we obtain ๎€ท๐’ždim๐‘‘๎€ธ๐‘–,๐‘—=๐œ”๐‘‘๎‚ต๐‘–,๐‘‘๐‘–โˆ’๐‘—2๎‚ถโˆ’๐œ”๐‘‘๎‚ต๐‘–,๐‘‘๐‘–โˆ’(๐‘—+2)2๎‚ถ.(2.17)

For another proof of the formula see [3].

Note that the original Cayley-Sylvester formula is ๎€ทโ„dim๐‘‘๎€ธ๐‘›=๐œ”๐‘‘๎‚€๐‘›,๐‘‘๐‘›2๎‚โˆ’๐œ”๐‘‘๎‚€๐‘›,๐‘‘๐‘›2๎‚.โˆ’1(2.18) Also, in [6] we proved that ๎€ท๐’ždim๐‘‘๎€ธ๐‘›=๐œ”๐‘‘๎‚€๐‘›,๐‘‘๐‘›2๎‚+๐œ”๐‘‘๎‚€๐‘›,๐‘‘๐‘›โˆ’12๎‚.(2.19) Here (โ„๐‘‘)๐‘›,(๐’ž๐‘‘)๐‘› are the components of standard grading of the algebras โ„๐‘‘, ๐’ž๐‘‘ under degree.

3. Calculation of dim(๐ถ๐‘‘)๐‘–,๐‘—

It is well known that the number ๐œ”๐‘‘(๐‘–,(๐‘‘๐‘–โˆ’๐‘—)/2) of nonnegative integer solutions of the following system ๐›ผ1+2๐›ผ2+โ‹ฏ+๐‘‘๐›ผ๐‘‘=๐‘‘๐‘–โˆ’๐‘—2,๐›ผ0+๐›ผ1+โ‹ฏ+๐›ผ๐‘‘=๐‘–,(3.1) is given by the coefficient of ๐‘ง๐‘›๐‘ก(๐‘‘๐‘–โˆ’๐‘—)/2 of the generating function๐‘“๐‘‘1(๐‘ง,๐‘ก)=๎€ท(1โˆ’๐‘ง)(1โˆ’๐‘ง๐‘ก)โ‹ฏ1โˆ’๐‘ง๐‘ก๐‘‘๎€ธ.(3.2) We will use the notation [๐‘ฅ๐‘˜]๐น(๐‘ฅ) to denote the coefficient of ๐‘ฅ๐‘˜ in the series expansion of ๐น(๐‘ฅ)โˆˆโ„‚[[๐‘ฅ]]. Thus ๐œ”๐‘‘๎‚ต๐‘–,๐‘‘๐‘–โˆ’๐‘—2๎‚ถ=๎€บ๐‘ง๐‘–๐‘ก(๐‘‘๐‘–โˆ’๐‘—)/2๎€ป๐‘“๐‘‘(๐‘ง,๐‘ก).(3.3) It is clear that ๐œ”๐‘‘๎‚ต๐‘–,๐‘‘๐‘–โˆ’๐‘—2๎‚ถ=๎€บ๐‘ง๐‘–๐‘ก๐‘‘๐‘–โˆ’๐‘—๎€ป๐‘“๐‘‘๎€ท๐‘ง,๐‘ก2๎€ธ=๎‚ƒ๎€ท๐‘ง๐‘ก๐‘‘๎€ธ๐‘–๎‚„๐‘ก๐‘—๐‘“๐‘‘๎€ท๐‘ง,๐‘ก2๎€ธ.(3.4)

Similarly, the number ๐œ”๐‘‘(๐‘–,(๐‘‘๐‘–โˆ’(๐‘—+2))/2) of nonnegative integer solutions of the following system๐›ผ1+2๐›ผ2+โ‹ฏ+๐‘‘๐›ผ๐‘‘=๐‘‘๐‘–โˆ’(๐‘—+2)2,๐›ผ0+๐›ผ1+โ‹ฏ+๐›ผ๐‘‘=๐‘–,(3.5)

equals ๎€บ๐‘ง๐‘–๐‘ก(๐‘‘๐‘–โˆ’(๐‘—+2))/2๎€ป๐‘“๐‘‘๎€บ๐‘ง(๐‘ง,๐‘ก)=๐‘–๐‘ก๐‘‘๐‘–โˆ’(๐‘—+2)๎€ป๐‘“๐‘‘๎€ท๐‘ง,๐‘ก2๎€ธ=๎‚ƒ๎€ท๐‘ง๐‘ก๐‘‘๎€ธ๐‘–๎‚„๐‘ก๐‘—+2๐‘“๐‘‘๎€ท๐‘ง,๐‘ก2๎€ธ.(3.6)

Therefore, ๐œ”๐‘‘๎‚ต๐‘–,๐‘‘๐‘–โˆ’๐‘—2๎‚ถโˆ’๐œ”๐‘‘๎‚ต๐‘–,๐‘‘๐‘–โˆ’(๐‘—+2)2๎‚ถ=๎‚ƒ๎€ท๐‘ง๐‘ก๐‘‘๎€ธ๐‘–๎‚„๐‘ก๐‘—๐‘“๐‘‘๎€ท๐‘ง,๐‘ก2๎€ธโˆ’๎‚ƒ๎€ท๐‘ง๐‘ก๐‘‘๎€ธ๐‘–๎‚„๐‘ก๐‘—+2๐‘“๐‘‘๎€ท๐‘ง,๐‘ก2๎€ธ=๎‚ƒ๎€ท๐‘ง๐‘ก๐‘‘๎€ธ๐‘–๎‚„๎€ท๐‘ก๐‘—โˆ’๐‘ก๐‘—+2๎€ธ๐‘“๐‘‘๎€ท๐‘ง,๐‘ก2๎€ธ=๎‚ƒ๎€ท๐‘ง๐‘ก๐‘‘๎€ธ๐‘–๎‚„๐‘ก๐‘—๎€ท1โˆ’๐‘ก2๎€ธ๐‘“๐‘‘๎€ท๐‘ง,๐‘ก2๎€ธ=๎€บ๐‘ง๐‘–๐‘ก๐‘‘๐‘–โˆ’๐‘—๎€ป๎€ท1โˆ’๐‘ก2๎€ธ๐‘“๐‘‘๎€ท๐‘ง,๐‘ก2๎€ธ.(3.7) Thus, the following statement holds.

Theorem 3.1. The number dim(๐’ž๐‘‘)๐‘–,๐‘— of linearly independent covariants of degree ๐‘– and order ๐‘— for the binary d- form is given by the formula ๎€ท๐ถdim๐‘‘๎€ธ๐‘–,๐‘—=๎€บ๐‘ง๐‘–๐‘ก๐‘‘๐‘–โˆ’๐‘—๎€ป๎ƒฉ1โˆ’๐‘ก2๎€ท(1โˆ’๐‘ง)1โˆ’๐‘ง๐‘ก2๎€ธโ‹ฏ๎€ท1โˆ’๐‘ง๐‘ก2๐‘‘๎€ธ๎ƒช.(3.8)
It is clear that ๎€บ๐‘ง๐‘–๐‘ก๐‘‘๐‘–โˆ’๐‘—๎€ป๎ƒฉ1โˆ’๐‘ก2๎€ท(1โˆ’๐‘ง)1โˆ’๐‘ง๐‘ก2๎€ธโ‹ฏ๎€ท1โˆ’๐‘ง๐‘ก2๐‘‘๎€ธ๎ƒช=๎€บ๐‘ง๐‘–๐‘ก(๐‘‘๐‘–โˆ’๐‘—)/2๎€ป๎ƒฉ1โˆ’๐‘ก(๎€ท1โˆ’๐‘ง)(1โˆ’๐‘ง๐‘ก)โ‹ฏ1โˆ’๐‘ง๐‘ก๐‘‘๎€ธ๎ƒช.(3.9) By using the decomposition 1๎€ท(1โˆ’๐‘ง)(1โˆ’๐‘ง๐‘ก)โ‹ฏ1โˆ’๐‘ง๐‘ก๐‘‘๎€ธ=โˆž๎“๐‘˜=0๎ƒฌ๐‘‘๐‘–๎ƒญ๐‘ก๐‘ง๐‘–,(3.10) where ๎€บ๐‘‘๐‘›๎€ป๐‘ž is the ๐‘ž-binomial coefficient ๎ƒฌ๐‘‘๐‘›๎ƒญ๐‘ž๎€ทโˆถ=1โˆ’๐‘ž๐‘‘+1๎€ธ๎€ท1โˆ’๐‘ž๐‘‘+2๎€ธโ‹ฏ๎€ท1โˆ’๐‘ž๐‘‘+๐‘›๎€ธ๎€ท(1โˆ’๐‘ž)1โˆ’๐‘ž2๎€ธโ‹ฏ(1โˆ’๐‘ž๐‘›),(3.11) one obtains the well-known formula ๎€ท๐ถdim๐‘‘๎€ธ๐‘–,๐‘—=๎€บ๐‘ก(๐‘‘๐‘–โˆ’๐‘—)/2๎€ป๎ƒฌ๐‘‘๐‘–๎ƒญ(1โˆ’๐‘ก)๐‘ก,(3.12) for instance, see [3].

4. Explicit Formula for ๐’ซ๐‘‘(๐‘ง,๐‘ก)

Let us prove Springer-type formula for the bivariate Poincarรฉ series ๐’ซ๐‘‘(๐‘ง,๐‘ก) of the algebra covariants of the binary ๐‘‘-form. Consider the โ„‚-algebra โ„ค[[๐‘ก,๐‘ง]] of formal power series. For an integer ๐‘‘โˆˆโ„• define the โ„‚-linear function ฮจ๐‘‘,โˆถโ„ค[[๐‘ง,๐‘ก]]โŸถโ„ค[[๐‘ง,๐‘ก]](4.1) in the following way ฮจ๐‘‘๎€ท๐‘ง๐‘–๐‘ก๐‘—๎€ธ=๎ƒฏ๐‘ง๐‘–๐‘ก๐‘‘๐‘–โˆ’๐‘—,if๐‘‘๐‘–โˆ’๐‘—โ‰ฅ0,0,if๐‘‘๐‘–โˆ’๐‘—<0.(4.2)

The main idea of the ensuing calculations is that the Poincarรฉ series ๐’ซ๐‘‘(๐‘ง,๐‘ก) can be expressed in terms of function ฮจ๐‘‘. The following simple but important statement holds.

Lemma 4.1. ๐’ซ๐‘‘(๐‘ง,๐‘ก)=ฮจ๐‘‘๎ƒฉ1โˆ’๐‘ก2๎€ท(1โˆ’๐‘ง๐‘ก)1โˆ’๐‘ง๐‘ก2๎€ธโ‹ฏ๎€ท1โˆ’๐‘ง๐‘ก2๐‘‘๎€ธ๎ƒช.(4.3)

Proof. Theorem 2.2 implies that dim(๐ถ๐‘‘)๐‘–,๐‘—=[๐‘ง๐‘–๐‘ก๐‘‘๐‘–โˆ’๐‘—]๐‘“๐‘‘(๐‘ง,๐‘ก2). Then ๐’ซ๐‘‘(๐‘ง,๐‘ก)=โˆž๎“๐‘–,๐‘—=0๎€ท๐ถdim๐‘‘๎€ธ๐‘–,๐‘—๐‘ง๐‘–๐‘ก๐‘—=โˆž๎“๐‘–,๐‘—=0๐‘ง๎€ท๎€บ๎€ท๐‘–๐‘ก๐‘‘๐‘–โˆ’๐‘—๐‘“๎€ธ๎€ป๐‘‘๎€ท๐‘ง,๐‘ก2๐‘ง๎€ธ๎€ธ๐‘–๐‘ก๐‘—=ฮจ๐‘‘๎€ท๐‘“๐‘‘๎€ท๐‘ง,๐‘ก2.๎€ธ๎€ธ(4.4)

Let ๐œ“๐‘›โˆถโ„ค[[๐‘ก]]โ†’โ„ค[[๐‘ก,๐‘ง]],๐‘›โˆˆโ„ค be a โ„‚-linear function defined by ๐œ“๐‘›(๐‘ก๐‘š)โˆถ=๐‘ง๐‘–๐‘ก๐‘—๎€ฝ๐‘˜,where๐‘–โˆถ=min๎…žโˆฃ๐‘›๐‘˜๎…ž๎€พโˆ’๐‘šโ‰ฅ0,๐‘—=๐‘›๐‘–โˆ’๐‘š,(4.5)

for ๐‘–,๐‘—,๐‘š,๐‘›โˆˆโ„•. Note that ๐œ“๐‘›(๐‘ก0)=1 and ๐œ“1(๐‘ก๐‘š)=๐‘ง๐‘š, ๐œ“0(๐‘ก๐‘š)=1. Also, put ๐œ“๐‘›(๐‘ก๐‘š)=0 for ๐‘›<0. It is clear that ๐œ“๐‘›(๐‘ก๐‘›๐‘–โˆ’๐‘—)=๐‘ง๐‘–๐‘ก๐‘— if ๐‘›๐‘–โˆ’๐‘—โ‰ฅ0, ๐‘—<๐‘›.

In important special cases, calculating the functions ฮจ can be reduced to calculating the functions ๐œ“. The following statements hold.

Lemma 4.2. (i) For ๐‘…(๐‘ก),๐ป(๐‘ก)โˆˆโ„‚[[๐‘ก]] holds ๐œ“๐‘›(๐‘…(๐‘ก๐‘›)๐ป(๐‘ก))=๐‘…(๐‘ง)๐œ“๐‘›(๐ป(๐‘ก)).
(ii) For ๐‘…(๐‘ก)โˆˆโ„‚[[๐‘ก]] and for ๐‘›,๐‘˜โˆˆโ„• holds ฮจ๐‘›๎‚ต๐‘…(๐‘ก)1โˆ’๐‘ง๐‘ก๐‘˜๎‚ถ=โŽงโŽชโŽจโŽชโŽฉ๐œ“๐‘›โˆ’๐‘˜(๐‘…(๐‘ก))1โˆ’๐‘ง๐‘ก๐‘›โˆ’๐‘˜,๐‘›โ‰ฅ๐‘˜,0,if๐‘›<๐‘˜.(4.6)

Proof. (i) The statement follows from the linearity of the function ๐œ“๐‘› and from the following simple observation: ๐œ“๐‘›๎€ท๐‘ก๐‘›๐‘˜๐‘ก๐‘›๐‘–โˆ’๐‘—๎€ธ=๐œ“๐‘›๎€ท๐‘ก๐‘›(๐‘˜+๐‘–)โˆ’๐‘—๎€ธ=๐‘ง๐‘˜+๐‘–๐‘ก๐‘—=๐‘ง๐‘˜๐‘ง๐‘–๐‘ก๐‘—=๐‘ง๐‘˜๐œ“๐‘›๎€ท๐‘ก๐‘›๐‘–โˆ’๐‘—๎€ธ,(4.7) for ๐‘›๐‘–โˆ’๐‘—โ‰ฅ0 and ๐‘—<๐‘›.
(ii) Let โˆ‘๐‘…(๐‘ก)=โˆž๐‘š=0๐‘Ž๐‘š๐‘ก๐‘š. Then for ๐‘˜<๐‘› we have ฮจ๐‘›๎‚ต๐‘…(๐‘ก)1โˆ’๐‘ง๐‘ก๐‘˜๎‚ถ=ฮจ๐‘›๎ƒฉโˆž๎“๐‘š,๐‘ =0๐‘Ž๐‘š๐‘ก๐‘š๎€ท๐‘ง๐‘ก๐‘˜๎€ธ๐‘ ๎ƒช=ฮจ๐‘›๎ƒฉโˆž๎“๐‘š,๐‘ =0๐‘Ž๐‘š๐‘ง๐‘ ๐‘ก๐‘˜๐‘ +๐‘š๎ƒช=๎“(๐‘›โˆ’๐‘˜)๐‘ โˆ’๐‘šโ‰ฅ0๐‘Ž๐‘š๐‘ง๐‘ ๐‘ก(๐‘›โˆ’๐‘˜)๐‘ โˆ’๐‘š=โˆž๎“๐‘š,๐‘ =0๐‘Ž๐‘š๐œ“๐‘›โˆ’๐‘˜(๐‘ก๐‘š)๎€ท๐‘ง๐‘ก๐‘›โˆ’๐‘˜๎€ธ๐‘ =โˆž๎“๐‘š=0๐‘Ž๐‘š๐œ“๐‘›โˆ’๐‘˜(๐‘ก๐‘š)11โˆ’๐‘ง๐‘ก๐‘›โˆ’๐‘˜=๐œ“๐‘›โˆ’๐‘˜(๐‘…(๐‘ก))1โˆ’๐‘ง๐‘ก๐‘›โˆ’๐‘˜.(4.8)

Now we can present Springer-type formula for calculating of the bivariate Poincarรฉ series ๐’ซ๐‘‘(๐‘ง,๐‘ก).

Theorem 4.3. ๐’ซ๐‘‘๎“(๐‘ง,๐‘ก)=0โ‰ค๐‘˜<๐‘‘/2๐œ“๐‘‘โˆ’2๐‘˜๎ƒฉ(โˆ’1)๐‘˜๐‘ก๐‘˜(๐‘˜+1)๎€ท1โˆ’๐‘ก2๎€ธ๎€ท๐‘ก2,๐‘ก2๎€ธ๐‘˜๎€ท๐‘ก2,๐‘ก2๎€ธ๐‘‘โˆ’๐‘˜๎ƒช11โˆ’๐‘ง๐‘ก๐‘‘โˆ’2๐‘˜,(4.9) here (๐‘Ž,๐‘ž)๐‘›=(1โˆ’๐‘Ž)(1โˆ’๐‘Ž๐‘ž)โ‹ฏ(1โˆ’๐‘Ž๐‘ž๐‘›โˆ’1) is ๐‘ž-shifted factorial.

Proof. Consider the partial fraction decomposition of the rational function ๐‘“๐‘‘(๐‘ง,๐‘ก2): ๐‘“๐‘‘๎€ท๐‘ง,๐‘ก2๎€ธ=๐‘‘๎“๐‘˜=0๐‘…๐‘˜(๐‘ง)1โˆ’๐‘ก๐‘ง2๐‘˜.(4.10) It is easy to see, that ๐‘…๐‘˜(๐‘ก)=lim๐‘งโ†’๐‘กโˆ’2๐‘˜๎€ท๐‘“๐‘‘๎€ท๐‘ง,๐‘ก2๎€ธ๎€ท1โˆ’๐‘ง๐‘ก2๐‘˜๎€ธ๎€ธ=lim๐‘งโ†’๐‘กโˆ’2๐‘˜๎ƒฉ๎€ท1โˆ’๐‘ก2๎€ธ(๐‘ง,๐‘ก)๐‘‘+1๎€ท1โˆ’๐‘ง๐‘ก2๐‘˜๎€ธ๎ƒช=1โˆ’๐‘ก2๎€ท1โˆ’๐‘กโˆ’2๐‘˜๎€ธ๎€ท1โˆ’๐‘ก2โˆ’2๐‘˜๎€ธโ‹ฏ๎€ท1โˆ’๐‘ก2(๐‘˜โˆ’1)โˆ’2๐‘˜๎€ธ๎€ท1โˆ’๐‘ก2(๐‘˜+1)โˆ’2๐‘˜๎€ธโ‹ฏ๎€ท1โˆ’๐‘ก2๐‘‘โˆ’2๐‘˜๎€ธ=๐‘ก2๐‘˜+(2๐‘˜โˆ’2)+โ‹ฏ+2๎€ท1โˆ’๐‘ก2๎€ธ๎€ท๐‘ก2๐‘˜๐‘กโˆ’1๎€ธ๎€ท2๐‘˜โˆ’2๎€ธโ‹ฏ๎€ท๐‘กโˆ’12โˆ’1๎€ธ๎€ท1โˆ’๐‘ก2๎€ธโ‹ฏ๎€ท1โˆ’๐‘ก2๐‘‘โˆ’2๐‘˜๎€ธ=(โˆ’1)๐‘˜๐‘ก๐‘˜(๐‘˜+1)๎€ท1โˆ’๐‘ก2๎€ธ๎€ท๐‘ก2,๐‘ก2๎€ธ๐‘˜๎€ท๐‘ก2,๐‘ก2๎€ธ๐‘‘โˆ’๐‘˜.(4.11) Using the above Lemmas we obtain ๐’ซ๐‘‘(๐‘ง,๐‘ก)=ฮจ๐‘‘๎€ท๐‘“๐‘‘๎€ท๐‘ง,๐‘ก2๎€ธ๎€ธ=ฮจ๐‘‘๎ƒฉ๐‘›๎“๐‘˜=0๐‘…๐‘˜๎€ท๐‘ก2๎€ธ1โˆ’๐‘ง๐‘ก2๐‘˜๎ƒช=๎“0โ‰ค๐‘˜<๐‘‘/2๐œ‘๐‘‘โˆ’2๐‘˜๎ƒฉ(โˆ’1)๐‘˜๐‘ก๐‘˜(๐‘˜+1)๎€ท1โˆ’๐‘ก2๎€ธ๎€ท๐‘ก2,๐‘ก2๎€ธ๐‘˜๎€ท๐‘ก2,๐‘ก2๎€ธ๐‘‘โˆ’๐‘˜๎ƒช11โˆ’๐‘ง๐‘ก๐‘‘โˆ’2๐‘˜.(4.12)

Corollary 4.4. A denominator of the bivariate Poincarรฉ series ๐’ซ๐‘‘(๐‘ง,๐‘ก), ๐‘‘>2 can be written in the form [](๐‘‘+1)/2๎‘๐‘˜=0๎€ท1โˆ’๐‘ง๐‘ก๐‘‘โˆ’2๐‘˜๎€ธ๐‘‘โˆ’2๎‘๐‘–=1๎€ท1โˆ’๐‘ง๐‘˜๐‘–๎€ธ,(4.13) where ๐‘˜1,๐‘˜2,โ€ฆ,๐‘˜๐‘‘โˆ’2 are the degrees of elements of homogeneous system of parameters for the algebra of invariants โ„๐‘‘.

Proof. The formula of Theorem 4.3 implies that the bivariate Poincarรฉ series has the form ๐’ซ๐‘‘๐‘ƒ(๐‘ง,๐‘ก)=๐‘‘(๐‘ง,๐‘ก)โˆ[(๐‘‘+1)/2]๐‘˜=0๎€ท1โˆ’๐‘ง๐‘ก๐‘‘โˆ’2๐‘˜๎€ธ๐‘…๐‘‘,(๐‘ง)(4.14) for some polynomials ๐‘ƒ๐‘‘(๐‘ง,๐‘ก),๐‘…๐‘‘(๐‘ง). Thus, the Poincarรฉ series for the algebra of invariants โ„๐‘‘ has the form ๐’ซ๐‘‘๐‘ƒ(๐‘ง,0)=๐‘‘(๐‘ง,0)๐‘…๐‘‘.(๐‘ง)(4.15) The algebra of invariants โ„๐‘‘ is Cohen-Macaulay, and its transcendence degree for ๐‘‘>2 equals ๐‘‘โˆ’2, see [3]. Therefore it has a homogeneous system of ๐‘‘โˆ’2 parameters and the denominator ๐‘…๐‘‘(๐‘ง) of its Poincarรฉ series can be written in the following way ๐‘…๐‘‘(๐‘ง)=(1โˆ’๐‘ง๐‘˜1)(1โˆ’๐‘ง๐‘˜2)โ‹ฏ(1โˆ’๐‘ง๐‘˜๐‘‘โˆ’2), where ๐‘˜1,๐‘˜2,โ€ฆ,๐‘˜๐‘‘โˆ’2 are the degrees of elements of this homogeneous system of parameters.

5. Examples

For direct computations we use the following technical lemma.

Lemma 5.1. For ๐‘…(๐‘ก)โˆˆโ„‚[[๐‘ก]] one has ๐œ“๐‘›๎ƒฉ๐‘…(๐‘ก)๎€ท1โˆ’๐‘ก๐‘˜1๎€ธ๎€ท1โˆ’๐‘ก๐‘˜2๎€ธโ‹ฏ๎€ท1โˆ’๐‘ก๐‘˜๐‘š๎€ธ๎ƒช=๐œ“๐‘›๎€ท๐‘…(๐‘ง)๐‘„๐‘›๎€ท๐‘ก๐‘˜1๎€ธ๐‘„๐‘›๎€ท๐‘ก๐‘˜2๎€ธ๐‘„๐‘›๎€ท๐‘ก๐‘˜๐‘š๎€ธ๎€ธ๎€ท1โˆ’๐‘ง๐‘˜1๎€ธ๎€ท1โˆ’๐‘ง๐‘˜2๎€ธโ‹ฏ๎€ท1โˆ’๐‘ง๐‘˜๐‘š๎€ธ,(5.1) here ๐‘„๐‘›(๐‘ก)=1+๐‘ก+๐‘ก2+โ‹ฏ+๐‘ก๐‘›โˆ’1, and ๐‘˜๐‘– are natural numbers.

Proof. Taking into account Lemma 4.2 we get ๐œ“๐‘›๎‚ต๐‘”(๐‘ก)1โˆ’๐‘ก๐‘š๎‚ถ=๐œ“๐‘›๎‚ต๐‘”(๐‘ก)1โˆ’๐‘ก๐‘›๐‘š1โˆ’๐‘ก๐‘›๐‘š1โˆ’๐‘ก๐‘š๎‚ถ=11โˆ’๐‘ก๐‘š๐œ“๐‘›๎‚ต๐‘”(๐‘ก)1โˆ’๐‘ก๐‘›๐‘š1โˆ’๐‘ก๐‘š๎‚ถ=11โˆ’๐‘ก๐‘š๐œ“๐‘›๎€ท๎€ท๐‘”(๐‘ก)1+๐‘ก๐‘š+(๐‘ก๐‘š)2+โ‹ฏ+(๐‘ก๐‘š)๐‘›โˆ’1=1๎€ธ๎€ธ1โˆ’๐‘ก๐‘š๐œ“๐‘›๎€ท๐‘”(๐‘ก)๐‘„๐‘›(๐‘ก๐‘š)๎€ธ.(5.2) In a similar fashion we prove the general case.

By using Lemma 5.1 the bivariate Poincarรฉ series ๐’ซ๐‘‘(๐‘ง,๐‘ก) for ๐‘‘โ‰ค20 are found. All these results agree with Sylvester's calculations up to ๐‘‘=6, see [1, 2].

Below is the list of several series:๐’ซ11(๐‘ง,๐‘ก)=1โˆ’๐‘ง๐‘ก,๐’ซ21(๐‘ง,๐‘ก)=๎€ท1โˆ’๐‘ง๐‘ก2๎€ธ๎€ท1โˆ’๐‘ง2๎€ธ,๐’ซ3(๐‘ง๐‘ง,๐‘ก)โˆถ=2๐‘ก2โˆ’๐‘ง๐‘ก+1๎€ท(1โˆ’๐‘ง๐‘ก)1โˆ’๐‘ง๐‘ก3๎€ธ๎€ท1โˆ’๐‘ง4๎€ธ,๐’ซ4๐‘ง(๐‘ง,๐‘ก)=2๐‘ก4โˆ’๐‘ง๐‘ก2+1๎€ท1โˆ’๐‘ง๐‘ก2๎€ธ๎€ท1โˆ’๐‘ก4๐‘ง๎€ธ๎€ท1โˆ’๐‘ง2๎€ธ๎€ท1โˆ’๐‘ง3๎€ธ,๐’ซ5๐‘(๐‘ง,๐‘ก)=5(๐‘ง,๐‘ก)๎€ท(1โˆ’๐‘ง๐‘ก)1โˆ’๐‘ก3๐‘ง๎€ธ๎€ท1โˆ’๐‘ง๐‘ก5๎€ธ๎€ท1โˆ’๐‘ง8๎€ธ๎€ท1โˆ’๐‘ง6๎€ธ๎€ท1โˆ’๐‘ง4๎€ธ,๐‘5(๐‘ง,๐‘ก)=1+๐‘ง7๐‘ก3โˆ’๐‘ง6๐‘ก4+๐‘ง2๐‘ก2+2๐‘ง7๐‘กโˆ’๐‘ง5๐‘ก5โˆ’๐‘ง8๐‘ก2โˆ’2๐‘ง8๐‘ก6โˆ’๐‘ง8๐‘ก4+๐‘ง5๐‘ก3+๐‘ง5๐‘ก+๐‘ง9๐‘ก7โˆ’๐‘ง10๐‘ก6+๐‘ง10๐‘ก2โˆ’๐‘ง10๐‘ก4โˆ’๐‘ง11๐‘ก3+๐‘ง9๐‘ก3โˆ’๐‘ก3๐‘งโˆ’๐‘ง6+๐‘ง4๐‘ก4โˆ’๐‘ง๐‘ก+๐‘ง2๐‘ก6+๐‘ง2๐‘ก4+๐‘ง12+๐‘ง14๐‘ก6โˆ’๐‘ง13๐‘กโˆ’๐‘ง13๐‘ก5โˆ’๐‘ง13๐‘ก3โˆ’๐‘ง15๐‘ก7+๐‘ง14๐‘ก4โˆ’๐‘ง3๐‘ก7+๐‘ง7๐‘ก5.(5.3)