Table of Contents
ISRN Vascular Medicine
Volume 2011 (2011), Article ID 358426, 6 pages
http://dx.doi.org/10.5402/2011/358426
Research Article

Pentraxin 3 Released from Neutrophils Increases Plasma Levels in Patients with Acute Coronary Syndrome

1Department of Cardiology, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo 177-8521, Japan
2Department of Cardiology, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka 410-2295, Japan
3Department of Cardiology, Juntendo University School of Medicine, Tokyo 113-8431, Japan
4Division of Cellular and Molecular Pathology, Department of Cellular Function, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
5Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-0041, Japan

Received 10 August 2011; Accepted 26 September 2011

Academic Editor: A. Habib

Copyright © 2011 Kenji Inoue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Breviario, E. M. D'Aniello, J. Golay et al., “Interleukin-1-inducible genes in endothelial cells. Cloning of a new gene related to C-reactive protein and serum amyloid P component,” Journal of Biological Chemistry, vol. 267, no. 31, pp. 22190–22197, 1992. View at Google Scholar · View at Scopus
  2. V. V. Alles, B. Bottazzi, G. Peri, J. Golay, M. Introna, and A. Mantovani, “Inducible expression of PTX3, a new member of the pentraxin family, in human mononuclear phagocytes,” Blood, vol. 84, no. 10, pp. 3483–3493, 1994. View at Google Scholar · View at Scopus
  3. B. Bottazzi, V. Vouret-Craviari, A. Bastone et al., “Multimer formation and ligand recognition by the long pentraxin PTX3. Similarities and differences with the short pentraxins C-reactive protein and serum amyloid P component,” Journal of Biological Chemistry, vol. 272, no. 52, pp. 32817–32823, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. A. S. Savchenko, M. Imamura, R. Ohashi et al., “Expression of pentraxin 3 (PTX3) in human atherosclerotic lesions,” Journal of Pathology, vol. 215, no. 1, pp. 48–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. S. Rolph, S. Zimmer, B. Bottazzi, C. Garlanda, A. Mantovani, and G. K. Hansson, “Production of the long pentraxin PTX3 in advanced atherosclerotic plaques,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 5, pp. e10–14, 2002. View at Google Scholar · View at Scopus
  6. R. Latini, A. P. Maggioni, G. Peri et al., “Lipid Assessment Trial Network (LATIN) Investigators. Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction,” Circulation, vol. 110, no. 16, pp. 2349–2354, 2004. View at Publisher · View at Google Scholar
  7. G. Peri, M. Introna, D. Corradi et al., “PTX3, a prototypical long pentraxin, is an early indicator of acute myocardial infarction in humans,” Circulation, vol. 102, no. 6, pp. 636–641, 2000. View at Google Scholar · View at Scopus
  8. K. Inoue, A. Sugiyama, P. C. Reid et al., “Establishment of a high sensitivity plasma assay for human pentraxin3 as a marker for unstable angina pectoris,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 1, pp. 161–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Yamasaki, M. Kurimura, T. Kasai, M. Sagara, T. Kodama, and K. Inoue, “Determination of physiological plasma pentraxin 3 (PTX3) levels in healthy populations,” Clinical Chemistry and Laboratory Medicine, vol. 47, no. 4, pp. 471–477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Nakagawa, Y. Ogawa, H. Itoh et al., “Rapid transcriptional activation and early mRNA turnover of brain natriuretic peptide in cardiocyte hypertrophy. Evidence for brain natriuretic peptide as an “emergency” cardiac hormone against ventricular overload,” Journal of Clinical Investigation, vol. 96, no. 3, pp. 1280–1287, 1995. View at Google Scholar · View at Scopus
  11. K. Maeda, T. Tsutamoto, A. Wada, T. Hisanaga, and M. Kinoshita, “Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction,” American Heart Journal, vol. 135, no. 5 I, pp. 825–832, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Fuster, L. Badimon, J. J. Badimon, and J. H. Chesebro, “The pathogenesis of coronary artery disease and the acute coronary syndromes,” The New England Journal of Medicine, vol. 326, no. 5, pp. 242–250, 1992. View at Google Scholar · View at Scopus
  13. V. Fuster, P. R. Moreno, Z. A. Fayad, R. Corti, and J. J. Badimon, “Atherothrombosis and high-risk plaque: part I: evolving concepts,” Journal of the American College of Cardiology, vol. 46, no. 6, pp. 937–954, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Jaillon, G. Peri, Y. Delneste et al., “The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps,” Journal of Experimental Medicine, vol. 204, no. 4, pp. 793–804, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Jaillon, P. Jeannin, Y. Hamon et al., “Endogenous PTX3 translocates at the membrane of late apoptotic human neutrophils and is involved in their engulfment by macrophages,” Cell Death and Differentiation, vol. 16, no. 3, pp. 465–474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Nagata, K. Usuda, A. Uchiyama et al., “Characteristics of the pathological images of coronary artery thrombi according to the infarct-related coronary artery in acute myocardial infarction,” Circulation Journal, vol. 68, no. 4, pp. 308–314, 2004. View at Publisher · View at Google Scholar · View at Scopus