Abstract

The paper is mainly concerned with 𝑇𝜃-extensions of 𝑛-Lie algebras. The 𝑇𝜃-extension 𝐿𝜃(𝐿) of an 𝑛-Lie algebra 𝐿 by a cocycle θ is defined, and a class of cocycles is constructed by means of linear mappings from an 𝑛-Lie algebra on to its dual space. Finally all 𝑇𝜃-extensions of (𝑛+1)-dimensional 𝑛-Lie algebras are classified, and the explicit multiplications are given.

1. Introduction

𝑛-Lie algebras (or Lie 𝑛-algebra, Filippov algebra, Nambu-Poisson algebra, and so on) are a kind of multiple algebraic systems appearing in many fields in mathematics and mathematical physics (cf. [15]). Although the theory of 𝑛-Lie algebras has been widely studied ([614]), it is quite necessary to get more examples of 𝑛-Lie algebras and the method of constructing 𝑛-Lie algebras. However it is not easy due to the 𝑛-ary operation.

Bordemann in [15] introduced the notion of 𝑇-extension of a Lie algebra and showed that each solvable quadratic Lie algebra over an algebraically closed field of characteristic zero is either a 𝑇-extension or a nondegenerate ideal of codimension 1 in a 𝑇-extension of some Lie algebra. In [16], Figueroa-O'Farrill defined the notion of a double extension of a metric Lie n-algebra by another Lie n-algebra and proved that all metric Lie n-algebras are obtained from the simple and one-dimensional ones by iterating the operations of orthogonal direct sum and double extension. The paper [17] studied the 𝑇𝜃-extension and 𝑇-extension of metric 3-Lie algebras and provided a sufficient and necessary condition of a 𝑇-extension of 3-Lie algebra admitting a metric.

This paper defines the 𝑇𝜃-extension of an 𝑛-Lie algebra 𝐿 by the coadjoint module 𝐿 and a cocycle 𝜃 from 𝐿𝑛 on to the dual space 𝐿 of 𝐿. The main result of the paper is the complete classification of the 𝑇𝜃-extensions of (𝑛+1)-dimensional 𝑛-Lie algebras.

Throughout this paper, 𝑛-Lie algebras are of finite dimensions and over an algebraically closed field 𝐹 of characteristic zero. Any multiplication of basis vectors which is not listed in the multiplication table of an 𝑛-Lie algebra is assumed to be zero, and the symbol ̂𝑥 means that 𝑥 is omitted. If 𝐿 is a vector space over a field 𝐹 with a basis 𝑒1,,𝑒𝑚, then 𝑉 can be denoted by 𝑉=𝐹𝑒1++𝐹𝑒𝑚.

2. 𝑇𝜃-Extensions of 𝑛-Lie Algebras

To study the 𝑇𝜃-extensions of 𝑛-Lie algebras, we need some definitions and basic facts.

An 𝑛-Lie algebra 𝐿 is a vector space with an 𝑛-ary skew-symmetric operation satisfying𝑥1,,𝑥𝑛𝑥=sgn(𝜎)𝜎(1),,𝑥𝜎(𝑛),(2.1)𝑥1,,𝑥𝑛,𝑦2,,𝑦𝑛=𝑛𝑖=1𝑥1𝑥,,𝑖,𝑦2,,𝑦𝑛,,𝑥𝑛(2.2) for every 𝑥1,,𝑥𝑛,𝑦2,,𝑦𝑛𝐿 and every permutation 𝜎𝑆𝑛. Identity (2.2) is called the generalized Jacobi identity. A subspace 𝐵 of 𝐿 is referred to as a subalgebra (ideal) of 𝐿 if [𝐵,,𝐵]𝐵 ([𝐵,𝐿,,𝐿]𝐵). In particular, the subalgebra generated by [𝑥1,,𝑥𝑛] for all 𝑥1,,𝑥𝑛𝐿 is called the derived algebra of 𝐿 and is denoted by 𝐿1.

An 𝑛-Lie algebra 𝐿 is called solvable if 𝐿(𝑠)=0 for some 𝑠0, where 𝐿(0)=𝐿 and 𝐿(𝑠) is defined as 𝐿(𝑠+1)=[𝐿(𝑠),𝐿(𝑠),𝐿,,𝐿] for 𝑠0. An ideal 𝐿 is called nilpotent if 𝐿𝑠=0 for some 𝑠0, where 𝐿0=𝐿 and 𝐿𝑠 is defined as 𝐿𝑠=[𝐿𝑠1,𝐿,,𝐿], for 𝑠1. An 𝑛-Lie algebra 𝐿 is called abelian if 𝐿1=0.

Let 𝐿 be an 𝑛-Lie algebra over the field 𝐹 and 𝑉 a vector space. If there exists a multilinear mapping 𝜌𝐿(𝑛1)𝐸𝑛𝑑(𝑉) satisfying𝜌𝑥1,,𝑥𝑛,𝑦2,,𝑦𝑛1=𝑛𝑖=1(1)𝑛𝑖𝜌𝑥1,,̂𝑥𝑖,,𝑥𝑛𝜌𝑥𝑖,𝑦2,,𝑦𝑛2(2.3)𝜌𝑥1,,𝑥𝑛1𝑦,𝜌1,,𝑦𝑛1𝑥=𝜌1,,𝑥𝑛1𝜌𝑦1,,𝑦𝑛1𝑦𝜌1,,𝑦𝑛1𝜌𝑥1,,𝑥𝑛1=𝑛𝑖=1𝜌𝑦1𝑥,,1,,𝑥𝑛1,𝑦𝑖,,𝑦𝑛1(2.4) for all 𝑥𝑖,𝑦𝑖𝐿,𝑖=1,,𝑛, then (𝑉,𝜌) is called a representation of 𝐿 or 𝑉 is an 𝐿-module.

Let 𝜌(𝑥1,,𝑥𝑛1)=ad(𝑥1,,𝑥𝑛1) for 𝑥1,,𝑥𝑛1𝐿. Then (𝐿,ad) is an 𝐿-module and is called the adjoint module of 𝐿. If (𝑉,𝜌) is an 𝐿-module, then the dual space 𝑉 of 𝑉 is an 𝐿-module in the following way. For 𝑓𝑉,𝑣𝑉,𝑥1,,𝑥𝑛1𝐿, defines 𝜌𝐿𝑛1𝐸𝑛𝑑(𝑉),𝜌𝑥1,,𝑥𝑛1𝜌𝑥(𝑓)(𝑣)=𝑓1,,𝑥𝑛1.(𝑣)(2.5)(𝑉,𝜌) is called the dual module of 𝑉. If 𝑉=𝐿 and 𝜌=ad, that is, ad(𝑥1,,𝑥𝑛1)(𝑓)(𝑥)=𝑓([𝑥1,,𝑥𝑛1,𝑥]), (𝐿,ad) is called the coadjoint module of 𝐿.

Definition 2.1. Let 𝐿 be an 𝑛-Lie algebra. If the 𝑛-linear mapping 𝜃𝐿𝑛𝐿 satisfying for all 𝑥𝑖,𝑦𝑗𝐿,1𝑖𝑛,2𝑗𝑛, 𝑛𝑖=1𝜃𝑥1𝑥,,𝑖,𝑦2,,𝑦𝑛,,𝑥𝑛𝑥𝜃1,,𝑥𝑛,𝑦2,,𝑦𝑛+𝑛𝑖=1(1)𝑛𝑖𝑥1,,̂𝑥𝑖,,𝑥𝑛𝑥,𝜃𝑖,𝑦2,,𝑦𝑛+(1)𝑛𝑦2,,𝑦𝑛𝑥,𝜃1,,𝑥𝑛=0,(2.6) then 𝜃 is called a cocycle of 𝐿.

Theorem 2.2. Let 𝐿 be an 𝑛-Lie algebra over 𝐹, and let 𝜃𝐿𝑛𝐿 be a cocycle of 𝐿. Then 𝐿𝜃(𝐿)=𝐿𝐿 is an 𝑛-Lie algebra in the following multiplication: 𝑦1+𝑓1,,𝑦𝑛+𝑓𝑛𝜃=𝑦1,,𝑦𝑛𝐿𝑦+𝜃1,,𝑦𝑛+𝑛𝑖=1(1)𝑛𝑖ad𝑦1,,̂𝑦𝑖,,𝑦𝑛𝑓𝑖,(2.7) where 𝑦𝑖𝐿,𝑓𝑖𝐿,1𝑖𝑛.

Proof. It suffices to verify the Jacobi identity (2.2) for 𝐿𝜃(𝐿). For all 𝑦𝑖𝐿,𝑓𝑖𝐿,1𝑖2𝑛1, set 𝑧𝑖=𝑦𝑖+𝑓𝑖, and by identity (2.7) we have 𝑧1,,𝑧𝑛𝜃,𝑧𝑛+1,,𝑧2𝑛1𝜃=𝑦1+𝑓1,,𝑦𝑛+𝑓𝑛𝜃,𝑦𝑛+1+𝑓𝑛+1,,𝑦2𝑛1+𝑓2𝑛1𝜃=𝑦1,,𝑦𝑛𝐿,𝑦𝑛+1,,𝑦2𝑛1𝐿𝑦+𝜃1,,𝑦𝑛𝐿,𝑦𝑛+1,,𝑦2𝑛1+(1)𝑛1ad𝑦𝑛+1,,𝑦2𝑛1𝜃𝑦1,,𝑦𝑛+ad𝑦𝑛+1,,𝑦2𝑛1𝑛𝑖=1(1)𝑖+1ad𝑦1,,̂𝑦𝑖,,𝑦𝑛𝑓𝑖+𝑛1𝑗=1(1)𝑛𝑗1ad𝑦1,,𝑦𝑛𝐿,𝑦𝑛+1,,̂𝑦𝑛+𝑗,,𝑦2𝑛1𝑓𝑛+𝑗;(2.8) and for every 1𝑖,𝑘𝑛, 𝑧1,,𝑧𝑘1,𝑧𝑘,𝑧𝑛+1,,𝑧2𝑛1𝜃,𝑧𝑘+1,,𝑧𝑛𝜃=𝑦1,,𝑦𝑘1,𝑦𝑘,𝑦𝑛+1,,𝑦2𝑛1𝐿,𝑦𝑘+1,,𝑦𝑛𝐿𝑦+𝜃1,,𝑦𝑘1,𝑦𝑘,𝑦𝑛+1,,𝑦2𝑛1𝐿,𝑦𝑘+1,,𝑦𝑛+𝑘1𝑖=1(1)𝑛𝑖𝜌𝑦1,,̂𝑦𝑖,,𝑦𝑘1,𝑦𝑘,𝑦𝑛+1,,𝑦2𝑛1𝐿,𝑦𝑘+1,,𝑦𝑛𝑓𝑖+(1)𝑛𝑘ad𝑦1,,𝑦𝑘1,𝑦𝑘+1,,𝑦𝑛𝜃𝑦𝑘,𝑦𝑛+1,,𝑦2𝑛1+(1)𝑘+1ad𝑦1,,𝑦𝑘1,𝑦𝑘+1,,𝑦𝑛𝜌𝑦𝑛+1,,𝑦2𝑛1𝑓𝑘+ad𝑦1,,𝑦𝑘1,𝑦𝑘+1,,𝑦𝑛𝑛1𝑖=1(1)𝑘+𝑖+1ad𝑦𝑘,𝑦𝑛+1,,̂𝑦𝑛+𝑖,,𝑦2𝑛1𝑓𝑛+𝑖+𝑛𝑖=𝑘+1(1)𝑛𝑖ad𝑦1,,𝑦𝑘1,𝑦𝑘,𝑦𝑛+1,,𝑦2𝑛1𝐿,𝑦𝑘+1,,𝑦𝑛𝑓𝑖.(2.9) Thanks for identity (2.5), for 1𝑚𝑛, ad𝑦𝑛+1,,𝑦2𝑛1ad𝑦1,,̂𝑦𝑚,,𝑦𝑛𝑓𝑚=(1)𝑛𝑛1𝑗𝑚,𝑗=1ad𝑦1𝑦,,𝑗,𝑦𝑛+1,,𝑦2𝑛1𝐿,,̂𝑦𝑚,,𝑦𝑛𝑓𝑚.(2.10) For 1𝑚𝑛1, by identity (2.3), (1)𝑛𝑚1ad𝑦1,,𝑦𝑛𝐿,𝑦𝑛+1,,̂𝑦𝑛+𝑚,,𝑦2𝑛1𝑓𝑛+𝑚=𝑛𝑖=1(1)𝑚𝑖1ad𝑦1,,̂𝑦𝑖,,𝑦𝑛ad𝑦𝑖,𝑦𝑛+1,,̂𝑦𝑛+𝑚,,𝑦2𝑛1𝑓𝑛+𝑚.(2.11) Therefore, the multiplication of 𝐿𝜃(𝐿) defined by identity (2.7) satisfies 𝑧1,,𝑧𝑛𝜃,𝑧𝑛+1,,𝑧2𝑛1𝜃=𝑛𝑘=1𝑧1,,𝑧𝑘1,𝑧𝑘,𝑧𝑛+1,,𝑧2𝑛1𝜃,𝑧𝑘+1,,𝑧𝑛𝜃(2.12) for every 𝑧𝑖𝐿𝜃(𝐿),1𝑖2𝑛1.

Definition 2.3. The 𝑛-Lie algebra 𝐿𝜃(𝐿)=𝐿𝐿 with multiplication (2.7) is called the 𝑇𝜃-extension of 𝐿. In particular, the 𝑇0-extension corresponding to 𝜃=0 is called the trivial extension of 𝐿 and is denoted by 𝐿0(𝐿).

Then the multiplication of 𝐿0(𝐿) is as follows:𝑦1+𝑓1,,𝑦𝑛+𝑓𝑛0=𝑦1,,𝑦𝑛𝐿+𝑛𝑖=1(1)𝑛𝑖ad𝑦1,,̂𝑦𝑖,,𝑦𝑛𝑓𝑖,(2.13) where 𝑦𝑖𝐿,𝑓𝑖𝑉,1𝑖𝑛.

Theorem 2.4. Let 𝐿 be an 𝑛-Lie algebra, and let 𝜃𝐿𝑛𝐿 be a cocycle of 𝐿. Then one has the following results. (1)𝐿 is an abelian ideal of the 𝑇𝜃-extension.(2)If 𝐿 is solvable, then the 𝑇𝜃-extension 𝐿𝜃(𝐿) is solvable.(3)If 𝐿 is a nilpotent 𝑛-Lie algebra, then every 𝑇𝜃-extension is nilpotent.(4)If 𝜃0, then 𝐿𝜃(𝐿) is an essential extension of 𝐿 by the module 𝐿. If 𝜃=0, 𝐿0(𝐿) is a nonessential extension of 𝐿.

Proof. From identity (2.7), 𝐿 is an abelian ideal of 𝐿𝜃(𝐿) since [𝐿,𝐿,𝐿𝜃(𝐿),,𝐿𝜃(𝐿)]𝜃=0, and [𝐿,𝐿𝜃(𝐿),,𝐿𝜃(𝐿)]𝜃𝐿.
Now let 𝐿 be solvable and 𝐿(𝑠)=0. By induction on 𝑟, we have 𝐿𝜃(𝑟+1)𝐿=[𝐿𝜃(𝑟)𝐿,𝐿𝜃(𝑟)𝐿,𝐿𝜃𝐿,,𝐿𝜃𝐿𝜃𝐿(𝑟+1)𝐿+𝜃(𝑟),𝐿(𝑟),𝐿,,𝐿+𝐿.(2.14) Then we have 𝐿𝜃(𝑠+1)(𝐿)𝐿. Thanks to result (1), 𝐿𝜃(𝑠+2)(𝐿)=0. Result (2) follows.
(3) Since 𝐿 is nilpotent, 𝐿𝑠=[𝐿𝑠1,𝐿,,𝐿]𝐿=0 for some nonnegative integer 𝑠. For every cocycle 𝜃𝐿𝑛𝐿, by identity (2.6), 𝐿1𝜃𝐿𝐿1+𝜃(𝐿,,𝐿)+ad𝐿(𝐿,,𝐿)𝐿1+𝐿.(2.15)
Inductively, we have 𝐿𝑠𝜃(𝐿)𝐿(𝑠)+𝐿=𝐿 since 𝐿𝑠=0. Then we have 𝐿𝜃2𝑠(𝐿)ad𝑠(𝐿,,𝐿)(𝐿). Note that for 𝑓ad𝑠(𝐿,,𝐿)(𝐿), we have 𝑓(𝐿)𝑓(𝐿𝑠)=0. Thus, 𝐿𝜃2𝑠(𝐿)=0, that is, 𝐿𝜃(𝐿) is a nilpotent 𝑛-Lie algebra.
It follows from result (4) that 𝐿 is a subalgebra of 𝐿𝜃(𝐿) if 𝜃=0.

For constructing 𝑇𝜃-extensions of an 𝑛-Lie algebra 𝐿, we give the following method to get cocycles.

Theorem 2.5. Let 𝐿 be an 𝑛-Lie algebra. Then for every linear mapping 𝜎𝐿𝐿, the skew-symmetric mapping 𝜃𝜎𝐿𝑛𝐿 given by, for all 𝑥1,,𝑥𝑛𝐿, 𝜃𝜎𝑥1,,𝑥𝑛𝑥=𝜎1,,𝑥𝑛𝐿𝑛𝑖=1(1)𝑛𝑖ad𝑥1,,̂𝑥𝑖,,𝑥𝑛𝜎𝑥𝑖(2.16) is a cocycle.

Proof. A tedious calculation shows that, for every 𝑥𝑖,𝑦𝑖𝐿,1𝑖,𝑘𝑛, 𝜃𝜎𝑥1,,𝑥𝑘1,𝑦2,,𝑦𝑛,𝑥𝑘𝐿,𝑥𝑘+1,,𝑥𝑛𝑥=𝜎1,,𝑥𝑘1,𝑦2,,𝑦𝑛,𝑥𝑘𝐿,𝑥𝑘+1,,𝑥𝑛𝐿+𝑘1𝑖=1(1)𝑛𝑖1ad𝑥1,,̂𝑥𝑖,,𝑥𝑘1,𝑦2,,𝑦𝑛,𝑥𝑘𝐿,𝑥𝑘+1,,𝑥𝑛𝜎𝑥𝑖+(1)𝑛𝑘1ad𝑥1,,𝑥𝑘1,𝑥𝑘+1,,𝑥𝑛𝜎𝑥𝑘+𝑛𝑗=𝑘+1(1)𝑛𝑗1ad𝑥1𝑦,,2,,𝑦𝑛,𝑥𝑘𝐿,𝑥𝑘+1,,̂𝑥𝑗,,𝑥𝑛𝜎𝑥𝑗;𝜃𝜎𝑥1,,𝑥𝑛𝐿,𝑦2,,𝑦𝑛𝑥=𝜎1,,𝑥𝑛𝐿,𝑦2,,𝑦𝑛𝐿+𝑛𝑖=2(1)𝑛𝑖1ad𝑥1,,𝑥𝑛𝐿,𝑦2,,̂𝑦𝑖,,𝑦𝑛𝜎𝑦𝑖+(1)𝑛ad𝑦2,,𝑦𝑛𝜎𝑥1,,𝑥𝑛𝐿;ad𝑥1,,̂𝑥𝑘,,𝑥𝑛𝜃𝜎𝑦2,,𝑦𝑛,𝑥𝑘=ad𝑥1,,̂𝑥𝑘,,𝑥𝑛𝜎𝑦2,,𝑦𝑛,𝑥𝑘𝐿+ad𝑥1,,̂𝑥𝑘,,𝑥𝑛𝑛𝑖=2(1)𝑛𝑖ad𝑦2,,̂𝑦𝑖,,𝑦𝑛,𝑥𝑘𝜎𝑦𝑖ad𝑥1,,̂𝑥𝑘,,𝑥𝑛ad𝑦2,,𝑦𝑛𝜎𝑥𝑘;ad𝑦2,,𝑦𝑛𝜃𝑓𝑥1,,𝑥𝑛=ad𝑦2,,𝑦𝑛𝜎𝑥1,,𝑥𝑛𝐿ad𝑦2,,𝑦𝑛𝑛𝑖=1(1)𝑛𝑖ad𝑥1,,̂𝑥𝑖,𝑥𝑛𝜎𝑥𝑖.(2.17) Therefore, 𝜃𝑓 satisfies identity (2.6). The proof is completed.

Theorem 2.6. Let 𝐿 be an 𝑛-Lie algebra, and let 𝜃𝐿𝑛𝐿 be a cocycle. Then for every linear mapping 𝜎𝐿𝐿, for all 𝑦𝐿,𝑓𝐿Γ𝐿𝜃𝐿𝐿𝜃+𝜃𝜎𝐿,Γ(𝑦+𝑓)=𝑦+𝜎(𝑦)+𝑓,(2.18) is an 𝑛-Lie algebra isomorphism.

Proof. It is clear that Γ is a linear isomorphism of the vector space 𝐿𝐿 to itself. Next, for every 𝑓𝑖𝐿,𝑦𝑖𝐿,1𝑖𝑛, Γ𝑦1+𝑓1,,𝑦𝑛+𝑓𝑛𝜃𝑦=Γ1,,𝑦𝑛𝐿𝑦+𝜃1,,𝑦𝑛+𝑛𝑖=1(1)𝑛𝑖ad𝑦1,,𝑦𝑖,,𝑦𝑛𝑓𝑖=𝑦1,,𝑦𝑛𝐿𝑦+𝜃1,,𝑦𝑛𝑦+𝜎1,,𝑦𝑛𝐿+𝑛𝑖=1(1)𝑛𝑖ad𝑦1,,𝑦𝑖,,𝑦𝑛𝑓𝑖.Γ𝑦1+𝑣1𝑦,,Γ𝑛+𝑣𝑛𝜃+𝜃𝜎=𝑦1𝑦+𝜎1+𝑓1,,𝑦𝑛𝑦+𝜎𝑛+𝑓𝑛𝜃+𝜃𝜎=𝑦1,,𝑦𝑛𝐿+𝜃+𝜃𝜎𝑦1,,𝑦𝑛+𝑛𝑖=1(1)𝑛𝑖ad𝑦1,,𝑦𝑖,,𝑦𝑛𝜎𝑦𝑖+𝑓𝑖=𝑦1,,𝑦𝑛𝐿𝑦+𝜃1,,𝑦𝑛𝑦+𝜎1,,𝑦𝑛𝐿+𝑛𝑖=1(1)𝑛𝑖ad𝑦1,,𝑦𝑖,,𝑦𝑛𝑓𝑖𝑦=Γ1+𝑓1,,𝑦𝑛+𝑓𝑛𝜃.(2.19) the result follows.

Corollary 2.7. Let 𝐿 be an 𝑛-Lie algebra, and let 𝜃1,𝜃2𝐿𝑛𝐿 be cocycles. If there exists a linear mapping 𝜎𝐿𝐿 such that 𝜃1𝜃2=𝜃𝜎, then the 𝑇𝜃1-extension 𝐿𝜃1(𝐿) is isomorphic to the 𝑇𝜃2-extension 𝐿𝜃2(𝐿) of 𝐿.

Proof. If there is a linear mapping 𝜎𝐿𝐿 such that 𝜃1=𝜃2+𝜃𝜎, by Theorem 2.6, the 𝑇𝜃1-extension 𝐿𝜃1(𝐿)=𝐿𝜃2+𝜃𝜎(𝐿) is isomorphic to the 𝑇𝜃2-extension 𝐿𝜃2(𝐿).

3. The 𝑇𝜃-Extension of (𝑛+1)-Dimensional 𝑛-Lie Algebras

In this section, we study the 𝑇𝜃-extension of (𝑛+1)-dimensional 𝑛-Lie algebras over 𝐹. First, we recall the classification theorem of (𝑛+1)-dimensional 𝑛-Lie algebras.

Lemma 3.1 (see [6]). Let 𝐿 be an (𝑛+1)-dimensional 𝑛-Lie algebra over 𝐹 and 𝑒1,𝑒2,,𝑒𝑛+1 a basis of 𝐿 (𝑛3). Then one and only one of the following possibilities hold up to isomorphisms. (a) If dim𝐿1=0, then 𝐿 is an abelian 𝑛-Lie algebra.(b)If dim𝐿1=1 and letting 𝐿1=𝐹𝑒1,in the case that 𝐿1𝑍(𝐿), (𝑏1)[𝑒2,,𝑒𝑛+1]=𝑒1; if 𝐿1 is not contained in 𝑍(𝐿), (𝑏2)[𝑒1,,𝑒𝑛]=𝑒1. (c) If dim𝐿1=2 and letting 𝐿1=𝐹𝑒1+𝐹𝑒2,(𝑐1)[𝑒2,,𝑒𝑛+1]=𝑒1,[𝑒1,𝑒3,,𝑒𝑛+1]=𝑒2; (𝑐2)[𝑒2,,𝑒𝑛+1]=𝛼𝑒1+𝑒2,[𝑒1,𝑒3,,𝑒𝑛+1]=𝑒2; (𝑐3)[𝑒1,𝑒3,,𝑒𝑛+1]=𝑒1,[𝑒2,,𝑒𝑛+1]=𝑒2,𝛼𝐹,𝛼0. (d)If dim𝐿1=𝑟, 3𝑟𝑛+1, let 𝐿1=𝐹𝑒1+𝐹𝑒2++𝐹𝑒𝑟. Then(𝑑𝑟)[𝑒1,,̂𝑒𝑖,,𝑒𝑛+1]=𝑒𝑖,1𝑖𝑟, where symbol ̂𝑒𝑖 means that 𝑒𝑖 is omitted.

We first introduce some notations. Let 𝐿 be an (𝑛+1)-dimensional 𝑛-Lie algebra in the Lemma 3.1, and let 𝑓1, ,𝑓𝑛+1 be the basis of 𝐿 satisfying 𝑓𝑖(𝑒𝑗)=𝛿𝑖𝑗,1𝑖,𝑗𝑛+1. For a cocycle 𝜃𝐿𝑛𝐿𝜃𝑒1,,̂𝑒𝑗,,𝑒𝑛+1=𝑛+1𝑠=1𝑎𝑗𝑠𝑓𝑠,𝑎𝑗𝑠𝐹,1𝑗𝑛+1.(3.1)

The 𝑇𝜃-extensions of the classes (𝑏𝑖), (𝑐𝑗), and (𝑑𝑟) in Lemma 3.1 are denoted by (𝑏𝑖), (𝑐𝑗) and (𝑑𝑟), respectively.

Theorem 3.2. Let 𝐿 be an (𝑛+1)-dimensional 𝑛-Lie algebra in the Lemma 3.1. Then up to isomorphisms the 𝑇𝜃-extensions of 𝐿 are only of the following possibilities: (𝑎)𝐿𝜃(𝐿)is abelian (𝑏1)[𝑒2,,𝑒𝑛+1]𝜃=𝑒1,[𝑒1,𝑒2,,̂𝑒𝑗,,𝑒𝑛+1]𝜃=𝑛+1𝑠=2𝑎𝑗𝑠𝑓𝑠,[𝑒2,,̂𝑒𝑗,,𝑒𝑛+1,𝑓1]𝜃=(1)𝑛+1+𝑗𝑓𝑗,𝑎𝑗𝑠𝐹,2𝑗𝑛+1. (𝑏2)[𝑒1,,𝑒𝑛]𝜃=𝑒1,[𝑒1,,̂𝑒𝑗,,𝑒𝑛+1]𝜃=𝑛+1𝑠=2𝑎𝑗𝑠𝑓𝑠,[𝑒1,,̂𝑒𝑗,,𝑒𝑛,𝑓1]𝜃=(1)𝑛𝑗+1𝑓𝑗,𝑎𝑗𝑠𝐹,1𝑗𝑛. (𝑐1)[𝑒1,𝑒3,,𝑒𝑛+1]𝜃=𝑒2,[𝑒2,𝑒3,,𝑒𝑛+1]𝜃=𝑒1,[𝑒3,,𝑒𝑛+1,𝑓2]𝜃=(1)𝑛𝑓1,[𝑒1,𝑒2,,̂𝑒𝑗,𝑒𝑛+1]𝜃=𝑛+1𝑠=3𝑎𝑗𝑠𝑓𝑠,[𝑒1,𝑒3,,̂𝑒𝑗,,𝑒𝑛+1,𝑓2]𝜃=(1)𝑛𝑗𝑓𝑗,[𝑒2,,̂𝑒𝑗,,𝑒𝑛+1,𝑓1]𝜃=(1)𝑛𝑗𝑓𝑗,𝑎𝑗𝑠𝐹,3𝑗𝑛+1.(𝑐2)[𝑒1,𝑒3,,𝑒𝑛+1]𝜃=𝑒2,[𝑒2,𝑒3,,𝑒𝑛+1]𝜃=𝛼𝑒1+𝑒2,[𝑒2,𝑒3,,̂𝑒𝑖,,𝑒𝑛+1,𝑓1]𝜃=(1)𝑛𝑖𝛼𝑓𝑖,[𝑒2,𝑒3,,̂𝑒𝑗,,𝑒𝑛+1,𝑓2]𝜃=(1)𝑛𝑖𝑓𝑗,[𝑒1,𝑒3,,̂𝑒𝑗,,𝑒𝑛+1,𝑓2]𝜃=(1)𝑛𝑗𝑓𝑗,[𝑒3,,,𝑒𝑛+1,𝑓2]𝜃=(1)𝑛(𝑓2+𝑓1),where 𝛼𝐹,𝛼0,2𝑖𝑛+1,3𝑗𝑛+1.(𝑐3)[𝑒1,𝑒3,,𝑒𝑛+1]𝜃=𝑒1,[𝑒2,𝑒3,,𝑒𝑛+1]𝜃=𝑒2,[𝑒3,,𝑒𝑛+1,𝑓1]𝜃=(1)𝑛𝑓1,[𝑒1,𝑒3,,̂𝑒𝑗,,𝑒𝑛+1,𝑓1]𝜃=(1)𝑛𝑗𝑓𝑗,3𝑗𝑛+1,[𝑒2,,̂𝑒𝑖,,𝑒𝑛+1,𝑓2]𝜃=(1)𝑛𝑖𝑓𝑖,2𝑖𝑛+1.(𝑑𝑟)[𝑒1,,̂𝑒𝑗,,𝑒𝑛+1]𝜃=𝑒𝑗,1𝑗𝑟,[𝑒1,𝑒2,,𝑒𝑟,,̂𝑒𝑗,,𝑒𝑛+1]𝜃=𝑛+1𝑠=𝑟+1𝑎𝑗𝑠𝑓𝑠,𝑎𝑗𝑠𝐹,𝑎𝑗𝑠𝐹,𝑟<𝑗,[𝑒1,,̂𝑒𝑗,,̂𝑒𝑖,,𝑒𝑛+1,𝑓𝑖]𝜃=(1)𝑛𝑗+1𝑓𝑗,1𝑗<𝑖𝑟,[𝑒1,,̂𝑒𝑖,,̂𝑒𝑗,,𝑒𝑛+1,𝑓𝑖]𝜃=(1)𝑛𝑗𝑓𝑗,1𝑖<𝑗𝑟,where 3𝑟𝑛+1.

Proof. Case (𝑎) is trivial. If 𝐿 is case (𝑏1), let 𝑓1,,𝑓𝑛+1 be a basis of 𝐿 satisfying 𝑓𝑖(𝑒𝑗)=𝛿𝑖𝑗,1𝑖,𝑗𝑛+1. By the direct computation, identity (2.6), and Lemma 3.1, for every cocycle 𝜃0𝐿𝑛𝐿, we have 𝜃0(𝑒2,𝑒3,,𝑒𝑛+1)=𝑛+1𝑠=1𝑎1𝑠𝑓𝑠,𝜃0(𝑒1,𝑒2,,̂𝑒𝑗,,𝑒𝑛+1)=𝑠𝑗=2𝑎𝑗𝑠𝑓𝑠,𝑎𝑗𝑠𝐹,2𝑗𝑛+1. The multiplication of 𝐿𝜃0(𝐿) in the basis 𝑒1,,𝑒𝑛+1,𝑓1,,𝑓𝑛+1 is 𝑒2,,𝑒𝑛+1𝜃0=𝑒1+𝑛+1𝑠=1𝑎1𝑠𝑓𝑠,𝑎1𝑠𝑒𝐹,1,𝑒2,,̂𝑒𝑗,,𝑒𝑛+1𝜃0=𝑠𝑗=2𝑎𝑗𝑠𝑓𝑠,𝑎𝑗𝑠𝑒𝐹,2𝑗𝑛+1,2,,,̂𝑒𝑗,,𝑒𝑛+1,𝑓1𝜃0=(1)𝑛+𝑗+1𝑓𝑗,2𝑗𝑛+1.(3.2)
By Theorem 2.5, omitting the computation process, for every linear mapping 𝜎𝐿𝐿, the cocycle 𝜃𝜎𝐿𝑛𝐿 satisfies 𝜃𝜎(𝑒2,𝑒3,,𝑒𝑛+1)=(𝑛+1)𝜎(𝑒1) and 𝜃𝜂(𝑒1,𝑒2,,̂𝑒𝑗,,𝑒𝑛+1)=0,2𝑗𝑛+1. Then, define 𝜎𝑒1=1𝜃𝑛+10𝑒2,𝑒3,,𝑒𝑛+1=𝑛+1𝑠=1𝑎1𝑠𝑓𝑠,(3.3) and 𝜎(𝑒𝑖)=0,2𝑖𝑛+1. Follows Theorem 2.6 that 𝐿𝜃0(𝐿) is isomorphic to 𝐿𝜃0+𝜃𝜎(𝐿) which with the multiplication (𝑏1).
In the case (𝑏2), let 𝜃0𝐿𝑛𝐿 be a cocycle. Omitting the computation process, we have 𝜃0(𝑒2,𝑒3,,𝑒𝑛+1)=𝑎11𝑓1++𝑎1𝑛+1𝑓𝑛+1,𝜃0(𝑒1,𝑒2,,̂𝑒𝑗,,𝑒𝑛+1)=𝑎𝑗2𝑓2++𝑎𝑗𝑛+1𝑓𝑛+1,𝑗2,𝑛+1. The multiplication table of 𝐿𝜃0(𝐿) is as follows: 𝑒2,,𝑒𝑛+1𝜃0=𝑒1+𝑛+1𝑠=1𝑎1𝑠𝑓𝑠,𝑒1,𝑒2,,̂𝑒𝑗,,𝑒𝑛+1𝜃0=𝑛+1𝑠=2𝑎𝑗𝑠𝑓𝑠,𝑒2,𝑒3,,̂𝑒𝑖,,𝑒𝑛+1,𝑓1𝜃0=(1)𝑛+𝑖+1𝑓𝑖,2𝑖𝑛+1.(3.4)
For every linear mapping 𝜎𝐿𝐿, the cocycle 𝜃𝜎: 𝐿𝑛𝐿, by Theorem 2.5, omitting the computation process, 𝜃𝜂(𝑒1,𝑒2,,̂𝑒𝑗,,𝑒𝑛+1)=0,2𝑗𝑛+1,𝜃𝜂(𝑒2,,𝑒𝑛+1)=(𝑛+1)𝜂(𝑒1). Then defining 𝜎𝑒11=𝜃𝑒𝑛+12,,𝑒𝑛+1=𝑎11𝑓1++𝑎1𝑛+1𝑓𝑛+1𝑒,𝜂𝑗=0,2𝑗𝑛+1,(3.5) we have 𝐿𝜃0+𝜃𝜎(𝐿) with the multiplication (𝑏2) which is isomorphic to 𝐿𝜃0(𝐿).
In case (𝑐1), for every cocycle 𝜃0𝐿𝑛𝐿, omitting the computation process, we have 𝜃0(𝑒1,𝑒3,,𝑒𝑛+1)=𝑛+1𝑠=1𝑎2𝑠𝑓𝑠,𝜃0(𝑒2,,𝑒𝑛+1)=𝑛+1𝑠=1𝑎1𝑠𝑓𝑠,𝜃0(𝑒1,𝑒2,,̂𝑒𝑗,,𝑒𝑛+1)=𝑛+1𝑠=3𝑎𝑗𝑠𝑓𝑠,𝑗=3,,𝑛+1. The multiplication table of 𝐿𝜃0(𝐿) is as follows: 𝑒1,𝑒3,,𝑒𝑛+1𝜃0=𝑒2+𝑛+1𝑠=1𝑎2𝑠𝑓𝑠,𝑒2,,𝑒𝑛+1𝜃0=𝑒1+𝑛+1𝑠=1𝑎1𝑠𝑓𝑠,𝑒1,𝑒2,𝑒3,,̂𝑒𝑗,,𝑒𝑛+1𝜃0=𝑛+1𝑠=3𝑎𝑗𝑠𝑓𝑠𝑒,3𝑗𝑛+1,1,𝑒3,,̂𝑒𝑗,,𝑒𝑛+1,𝑓2𝜃0=(1)𝑛𝑗𝑓𝑗𝑒,3𝑗𝑛+1,2,𝑒3,,̂𝑒𝑗,,𝑒𝑛+1,𝑓1𝜃0=(1)𝑛𝑗𝑓𝑗𝑒,3𝑗𝑛+1,3,,𝑒𝑛+1,𝑓2𝜃0=(1)𝑛𝑓1.(3.6)
Define the linear mapping 𝜎𝐿𝐿𝜎(𝑒2)=(1/(𝑛+1))𝜃0(𝑒1,𝑒3,,𝑒𝑛+1), 𝜎(𝑒1)=(1/(𝑛+1))𝜃0(𝑒2,𝑒3,,𝑒𝑛+1) and others are zero. By the direct computation 𝜃𝜎𝑒1,𝑒3,,𝑒𝑛+1=(𝑛+1)𝜂0𝑒2,𝜃𝜎𝑒2,𝑒3,,𝑒𝑛+1=(𝑛+1)𝜂0𝑒1.(3.7) Then 𝐿𝜃0+𝜃𝜎(𝐿) has the multiplication (𝑐1).
In the case (𝑐2), for every cocycle 𝜃0𝐿𝑛𝐿, we have 𝜃0(𝑒1,𝑒3,,𝑒𝑛+1)=𝑛+1𝑠=1𝑎2𝑠𝑓𝑠,𝜃0(𝑒2,,𝑒𝑛+1)=𝑛+1𝑠=1𝑎1𝑠𝑓𝑠,𝜃0(𝑒1,𝑒2,,̂𝑒𝑗,,𝑒𝑛+1)=𝑛+1𝑠=3𝑎𝑗𝑠𝑓𝑠,𝑗=3,,𝑛+1. The multiplication table of 𝐿𝜃0(𝐿) is as follows: 𝑒1,𝑒3,,𝑒𝑛+1𝜃0=𝑒2+𝑛+1𝑠=1𝑎2𝑠𝑓𝑠,𝑒2,,𝑒𝑛+1𝜃0=𝛼𝑒1+𝑒2+𝑛+1𝑠=1𝑎1𝑠𝑓𝑠,𝑒1,𝑒2,𝑒3,,̂𝑒𝑗,,𝑒𝑛+1𝜃0=𝑛+1𝑠=3𝑎𝑗𝑠𝑓𝑠𝑒,3𝑗𝑛+1,2,,̂𝑒𝑖,,𝑒𝑛+1,𝑓1𝜃0=(1)𝑛+𝑖𝛼𝑓𝑖𝑒,2𝑖𝑛+1,2,𝑒3,,̂𝑒𝑗,,𝑒𝑛+1,𝑓2𝜃0=(1)𝑛𝑗𝑓𝑗𝑒,3𝑗𝑛+1,1,𝑒3,,̂𝑒𝑗,,𝑒𝑛+1,𝑓2𝜃0=(1)𝑛𝑗𝑓𝑗𝑒,3𝑗𝑛+1,3,,̂𝑒𝑗,,𝑒𝑛+1,𝑓2𝜃0=(1)𝑛𝑓2+𝑓1.(3.8)
Define linear mapping 𝜎𝐿𝐿𝜎(𝑒2)=(1/(𝑛+1))𝜃0(𝑒1,𝑒3,,𝑒𝑛+1), 𝜎(𝑒1)=(1/𝛼(𝑛+1))(𝜃0(𝑒1,𝑒3,,𝑒𝑛+1)𝜃0(𝑒2,𝑒3,,𝑒𝑛+1)). Then we obtain 𝜃𝜎(𝑒1,𝑒3,,𝑒𝑛+1)=(𝑛+1)𝜎(𝑒2)=𝜃0(𝑒1,𝑒3,,𝑒𝑛+1),𝜃𝜎(𝑒2,𝑒3,,𝑒𝑛+1)=(𝑛+1)𝜎(𝛼𝑒1+𝑒2)=𝜃0(𝑒2,𝑒3,,𝑒𝑛+1) and others are zero. Therefore, 𝐿𝜃0+𝜃𝜎(𝐿) has the multiplication (𝑐2) in the basis 𝑒1,,𝑒𝑛+1,𝑓1,,𝑓𝑛+1.
In case (𝑐3), in similar discussions to above, for every cocycle 𝜃0𝐿𝑛𝐿, defining linear mapping 𝜎𝐿𝐿𝜎(𝑒1)=(1/(𝑛+1))𝜃0(𝑒1,𝑒3,,𝑒𝑛+1), 𝜂0(𝑒2)=(1/(𝑛+1))𝜃0(𝑒2,𝑒3,,𝑒𝑛+1), we have 𝜃𝜎𝑒1,𝑒3,,𝑒𝑛+1=𝑒(𝑛+1)𝜎1=𝜃0𝑒1,𝑒3,,𝑒𝑛+1,(3.9)𝜃𝜎(𝑒2,𝑒3,,𝑒𝑛+1)=(𝑛+1)𝜎(𝑒2)=𝜃0(𝑒2,𝑒3,,𝑒𝑛+1) and others are zero. Then 𝐿𝜃0+𝜃𝜎(𝐿) has the multiplication (𝑐3) in the basis 𝑒1,,𝑒𝑛+1,𝑓1,,𝑓𝑛+1.
Lastly, if 𝐿 is case (𝑑𝑟), 3𝑟𝑛+1, for every cocycle 𝜃0𝐿𝑛𝐿, we have 𝜃0(𝑒1,,,̂𝑒𝑖,,𝑒𝑛+1)=𝑛+1𝑠=1𝑎𝑖𝑠𝑓𝑠,1𝑖𝑟,𝜃0(𝑒1,,𝑒𝑟,,̂𝑒𝑗,,𝑒𝑛+1)=𝑛+1𝑗=𝑟+1𝑎𝑗𝑠𝑓𝑠,𝑟<𝑗𝑛+1. By the direct computation, the multiplication of 𝐿𝜃0(𝐿) is as follows: 𝑒1,,̂𝑒𝑖,,𝑒𝑛+1𝜃0=𝑒𝑖+𝑛+1𝑠=1𝑎𝑖𝑠𝑓𝑠𝑒,1𝑖𝑟,1,,𝑒𝑟,,̂𝑒𝑗,,𝑒𝑛+1𝜃0=𝑛+1𝑠=𝑟+1𝑎𝑗𝑠𝑓𝑗𝑒,𝑟<𝑗𝑛+1,1,,̂𝑒𝑗,,̂𝑒𝑖,,𝑒𝑛+1,𝑓𝑖𝜃0=(1)𝑛𝑗+1𝑓𝑗𝑒,1𝑗<𝑖𝑟,1,,̂𝑒𝑖,,̂𝑒𝑗,,𝑒𝑛+1,𝑓𝑖𝜃0=(1)𝑛𝑗𝑓𝑗,1𝑖<𝑗𝑟.(3.10) Define linear mapping 𝜎𝐿𝐿𝜎(𝑒𝑖)=(1/(𝑛+1))𝜃0(𝑒1,,̂𝑒𝑖,,𝑒𝑛+1),1𝑖𝑟, and 𝜎(𝑒𝑖)=0 if 𝑟<𝑖. Then we obtain 𝜃𝜎(𝑒1,,̂𝑒𝑖,,𝑒𝑛+1)=(𝑛+1)𝜎(𝑒𝑖)=𝜃0(𝑒1,,̂𝑒𝑖,,𝑒𝑛+1) for 1𝑖𝑟, and 𝜃𝜎(𝑒1,,̂𝑒𝑖,,𝑒𝑛+1)=0 if 𝑖>𝑟. Therefore, 𝐿𝜃0+𝜃𝜎(𝐿) with the multiplication (𝑑𝑟) in the basis 𝑒1,,𝑒𝑛+1,𝑓1,,𝑓𝑛+1 and 𝐿𝜃0(𝐿) is isomorphic to 𝐿𝜃0+𝜃𝜎(𝐿).

Acknowledgments

This project partially supported by NSF (10871192) of China, NSF (A2010000194) of Hebei Province, China.