Table of Contents
ISRN Signal Processing
Volume 2011 (2011), Article ID 414293, 17 pages
http://dx.doi.org/10.5402/2011/414293
Review Article

An Automated Fixed-Point Optimization Tool in MATLAB XSG/SynDSP Environment

1Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA
2P.O. Box 4004, Incline Village, NV 89450, USA
3Berkeley Wireless Research Center, Berkeley, CA 94704, USA

Received 8 December 2010; Accepted 20 January 2011

Academic Editor: B. Yuan

Copyright © 2011 Cheng C. Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Patterson and J. L. Hennessy, Computer Organization & Design: The Hardware/Software Interface, Morgan Kaufmann, Boston, Mass, USA, 2nd edition, 1997.
  2. D. Marković, V. Stojanović, B. Nikolić, M. A. Horowitz, and R. W. Brodersen, “Methods for true energy-performance optimization,” IEEE Journal of Solid-State Circuits, vol. 39, no. 8, pp. 1282–1293, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Shi, Floating-point to fixed-point conversion, Ph.D. thesis, Department of EECS, University of California, Berkeley, Calif, USA, 2004.
  4. H. Keding, M. Willems, M. Coors et al., “FRIDGE: a fixed-point design and simulation environment,” The Design, Automation, and Test in Europe, pp. 429–435, 1998. View at Google Scholar
  5. W. Sung and K. I. Kum, “Simulation-based word-length optimization method for fixed-point digital signal processing systems,” IEEE Transactions on Signal Processing, vol. 43, no. 12, pp. 3087–3090, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Kim, K. I. I. Kum, and W. Sung, “Fixed-point optimization utility for C and C++ based digital signal processing programs,” IEEE Transactions on Circuits and Systems II, vol. 45, no. 11, pp. 1455–1464, 1998. View at Google Scholar · View at Scopus
  7. M. Cantin, Y. Savaria, and P. Lavoie, “A comparison of automatic word length optimization procedures,” in Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 612–615, May 2002. View at Scopus
  8. P. Banerjee, “Automatic conversion of floating point MATLAB programs into fixed point FPGA based hardware design,” in Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 263–264, April 2003.
  9. C. Shi and R. W. Brodersen, “An automated floating-point to fixed-point conversion methodology,” in Proceedings of the IEEE International Conference on Accoustics, Speech, and Signal Processing, pp. 529–532, April 2003. View at Scopus
  10. C. Shi, “Practical, reliable and cost-efficiet floating-point to fixed-point conversion,” Qualification Exam, EECS, University of California, Berkeley, Calif, USA, 2002. View at Google Scholar
  11. S. Roy and P. Banerjee, “Al algorithm for trading off quantization error with hardware resources for MATLAB-based FPGA design,” IEEE Transactions on Computers, vol. 54, no. 7, pp. 886–896, 2005. View at Google Scholar
  12. M. L. Chang and S. Hauck, “Precis: a usercentric word-length optimization tool,” IEEE Design & Test of Computers, vol. 22, no. 4, pp. 349–361, 2005. View at Google Scholar
  13. L. Zhang, Y. Zhang, and W. Zhou, “Fast trade-off evaluation for digital signal processing systems during wordlength optimization,” in Proceedings of the IEEE/ACM Conference on Computer-Aided Design, pp. 731–738, November 2009.
  14. C. Shi, Statistical method for floating-point to fixed-point conversion, M.S. thesis, Department of EECS, University of California, Berkeley, Calif, USA, 2002.
  15. C. Shi and R. W. Brodersen, “Floating-point to fixed-point conversion with decision errors due to quantization,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 41–44, April 2004.
  16. C. Shi and R. W. Brodersen, “A perturbation theory on statistical quantization effects in fixed-point DSP with non-stationary input,” in Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 3, pp. 373–376, May 2004.
  17. C. Shi and R. W. Brodersen, “Automated fixed-point data-type optimization tool for signal processing and communication systems,” in Proceedings of the Design Automation Conference, pp. 478–483, San Diego, Calif, USA, June 2004.
  18. G. A. Constantinides, “Perturbation analysis for word-length optimization,” in Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 81–90, April 2003.
  19. J. A. Clarke, G. A. Constantinides, and P. Y. K. Cheung, “Word-length selection for power minimization via non-linear optimization,” ACM Transactions on Design Automation of Electronic Systems, vol. 14, no. 2, 2009. View at Google Scholar
  20. G. A. Constantinides, P. Cheung, and W. Luk, “Wordlength optimization for linear digital signal processing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 10, pp. 1432–1442, 2003. View at Google Scholar
  21. G. A. Constantinides, “Word-length optimization for differentiable nonlinear systems,” ACM Transactions on Design Automation of Electronic Systems, vol. 11, no. 1, pp. 26–43, 2006. View at Google Scholar
  22. D. Markovic, R. W. Brodersen, and B. Nikolić, “A 70GOPS, 34mW multi-carrier MIMO chip in 3.5mm2,” in Proceedings of the The International Symposium on VLSI Circuits, Digest of Technical Papers, pp. 196–197, June 2006.
  23. C. Shi, J. Hwang, S. McMillan, A. Root, and V. Singh, “A system level resource estimation tool for FPGAs,” in Proceedings of the International Conference on Field Programmable Logics and Its Applications, pp. 424–433, 2004.
  24. C. C. Wang, “Word-length Optimization for Synplify DSP Blockset with FPGA and ASIC Area-Estimation,” EE216B Project with Synopsys University Program, UCLA, 2008.
  25. FFC, http://bwrc.eecs.berkeley.edu/people/grad_students/ccshi/research/FFC/documentation.htm, Update tools, http://www.ee.ucla.edu/~dmgroup/optim/WLtool_DSPbook.zip.
  26. C. C. Wang, Design and optimization of low-power logic, M.S. thesis, Electrical Engineering Department, UCLA, 2009.
  27. C.-H. Yang and D. Marković, “A flexible DSP architecture for MIMO sphere decoding,” IEEE Transactions on Circuits and Systems I, vol. 56, no. 10, pp. 2301–2314, 2009. View at Publisher · View at Google Scholar
  28. V. Karkare, S. Gibson, and D. Marković, “A 130-uW, 64-channel spike-sorting DSP chip,” in Proceeding of the IEEE Asian Solid-State Circuits Conference, pp. 289–292, November 2009.
  29. Z. Towfic, S. K. Ting, and A. Sayed, “Sampling clock Jitter estimation and compensation in ADC circuits,” in Proceeding of the IEEE International Symposium on Circuits and Systems (ISCAS '10), pp. 829–832, June 2010.
  30. S. K. Ting and A. Sayed, “Reduction of the effects of spurious PLL tones on A/D converters,” in Proceeding of the IEEE International Symposium on Circuits and Systems (ISCAS '10), pp. 3985–3988, June 2010.
  31. D. Marković, B. Nikolić, and R.W. Brodersen, “Power and area minimization of multidimensional signal processing,” IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 922–934, 2007. View at Google Scholar
  32. R. Nanda, C. H. Yang, and D. Marković, “DSP architecture optimization in matlab/simulink environment,” in Proceeding of the Internatonal Symposium on VLSI, p. 192, June 2008.