Abstract

We study some properties of the remotely almost periodic functions. This paper studies viscosity solutions of general Hamilton-Jacobi equations in the time remotely almost periodic case. Existence and uniqueness results are presented under usual hypotheses.

1. Introduction

In this paper we consider the viscosity solutions of first-order Hamilton-Jacobi equations of the formπœ•π‘‘π‘’+𝐻(π‘₯,𝑒,𝐷𝑒)=𝑓(𝑑),(π‘₯,𝑑)βˆˆβ„π‘Γ—β„.(1.1) This problem was studied in [1] in the time periodic and almost periodic cases. And papers by Crandall and Lions (see [2–5]) proved the uniqueness and stability of viscosity solutions for a large class of equations, in particular for the initial value problemπœ•π‘‘π‘’+𝐻(π‘₯,𝑑,𝑒,𝐷𝑒)=0,(π‘₯,𝑑)βˆˆβ„π‘Γ—][,0,𝑇𝑒(π‘₯,0)=𝑒0(π‘₯),π‘₯βˆˆβ„π‘(1.2) and also for the stationary problem𝐻(π‘₯,𝑒,𝐷𝑒)=0,π‘₯βˆˆβ„π‘.(1.3) These results were extended by several papers, for example [6, 7].

Now in this paper we study this problem in a more regular condition, that is, in the time remotely almost periodic case. That is, we will look for such viscosity solutions when the Hamiltonian 𝐻 and 𝑓 are continuous functions 𝑓 is remotely almost periodic in 𝑑. The definition of remotely almost periodic was introduced by Sarason in 1984 in [8]. And Zhang and Yang in [9] and Zhang and Jiang in [10] gave such functions' applications.

This paper is structured as follows. In Section 2, we study a new type of almost periodic functionβ€”remotely almost periodic function. We present the definitions and prove some properties of such functions. Section 3 proves the uniqueness and existence of time remotely almost periodic viscosity solutions. In Section 3.1, we list some usual hypotheses used for the existence and uniqueness results and present two properties of viscosity solutions. In Section 3.2, we get some theorems for the uniqueness and existence of time remotely almost periodic viscosity solutions. And for the proof of the theorem we give two lemmas which play an important part. In Section 3.3, we concentrate on the asymptotic behaviour of time remotely almost periodic solutions for large frequencies.

In this paper, there are some abbreviations, like BUC, u.s.c, l.s.c, they stand for bounded uniformly continuous, upper semicontinuous, and lower semicontinuous, respectively. For the definition of viscosity subsolution and supersolution the reader can refer to [11].

2. Remotely Almost Periodic Function

It is well known that Bohr almost periodic function space is a Banach space, in which the distance is the supremum of the function. In [8], the author uses the superior limit as the distance in the space and defines a new type of almost periodic function, that is, remotely almost periodic function.

Definition 2.1. Let 𝑓 be a bounded uniformly continuous function on ℝ=(βˆ’βˆž,+∞). We say that 𝑓 is remotely almost periodic if and only if for all πœ€>0𝑇(𝑓,πœ€)=πœβˆˆβ„βˆΆlimsup|𝑑|β†’βˆž||||𝑓(𝑑+𝜏)βˆ’π‘“(𝑑)<πœ€(2.1) is relatively dense on ℝ. The number πœβˆˆπ‘‡(𝑓,πœ€) is called πœ€ remotely almost period.
And RAP(ℝ) denotes all these functions.

Definition 2.2. Let 𝑓 be a bounded uniformly continuous function on ℝ. We say that 𝑓 oscillates slowly if and only if for every πœβˆˆβ„lim|𝑑|β†’βˆž||||𝑓(𝑑+𝜏)βˆ’π‘“(𝑑)=0.(2.2) And SO(ℝ) denotes all these functions.

Next we will prove two propositions.

Proposition 2.3. Assume that 𝑓(𝑑) is remotely almost periodic and denote by ∫𝐹(𝑑)=𝑑0𝑓(𝑠)𝑑𝑠 a primitive of 𝑓(𝑑). Then 𝐹(𝑑) is remotely almost periodic if and only if 𝐹(𝑑) is bounded.

Proof. When 𝐹(𝑑) is remotely almost periodic, 𝐹(𝑑) is certainly bounded. For the converse, let 𝐹(𝑑) be bounded, without losing general, and assume that 𝐹(𝑑) is a real function. For any πœ€>0, there exists 𝑑0>0 large enough; we have 𝐺=sup|𝑑|>𝑑0𝐹(𝑑)>𝑔=inf|𝑑|>𝑑0𝐹(𝑑);(2.3) take fixed 𝑑1 and 𝑑2, |𝑑1|>𝑑0, |𝑑2|>𝑑0, and assume that 𝑑1<𝑑2, satisfying 𝐹𝑑1ξ€Έπœ€<𝑔+6𝑑,𝐹2ξ€Έπœ€>πΊβˆ’6.(2.4) Assume that 𝑙=𝑙(πœ€1) is an interval length of 𝑇(𝑓,πœ€1), where πœ€1=πœ€/6𝑑, 𝑑=|𝑑1βˆ’π‘‘2|. For every π›Όβˆˆπ‘…, take πœβˆˆπ‘‡(𝑓,πœ€1)∩[π›Όβˆ’π‘‘1,π›Όβˆ’π‘‘1+𝑙].
As we already know that 𝑓(𝑑) is remotely almost periodic, then we have limsup|𝑑|β†’βˆž||||𝑓(𝑑+𝜏)βˆ’π‘“(𝑑)<πœ€1;(2.5) that is, for πœ€1>0, there exists 𝑑0>0, and when |𝑑|>𝑑0, there is ||||𝑓(𝑑+𝜏)βˆ’π‘“(𝑑)<πœ€1,βˆ’πœ€1<𝑓(𝑑+𝜏)βˆ’π‘“(𝑑)<πœ€1.(2.6) Now take 𝑠𝑖=𝑑𝑖+𝜏(𝑖=1,2),𝐿=𝑙+𝑑. So 𝑠1,𝑠2∈[𝛼,𝛼+𝐿], and 𝐹𝑠2ξ€Έξ€·π‘ βˆ’πΉ1𝑑=𝐹2ξ€Έξ€·π‘‘βˆ’πΉ1ξ€Έβˆ’ξ€œπ‘‘2𝑑1ξ€œπ‘“(𝑑)𝑑𝑑+𝑑2𝑑+𝜏1+πœξ€·π‘‘π‘“(𝑑)𝑑𝑑=𝐹2ξ€Έξ€·π‘‘βˆ’πΉ1ξ€Έ+ξ€œπ‘‘2𝑑1[]πœ€π‘“(𝑑+𝜏)βˆ’π‘“(𝑑)𝑑𝑑>πΊβˆ’π‘”βˆ’3βˆ’πœ€1πœ€π‘‘=πΊβˆ’π‘”βˆ’2,(2.7) that is, 𝐹𝑠1ξ€Έξ€Έ+ξ€·ξ€·π‘ βˆ’π‘”πΊβˆ’πΉ2<πœ€ξ€Έξ€Έ2;(2.8) as the formulas in two brackets of previous inequality are both nonnegative, so there are two numbers 𝑠1 and 𝑠2 in any interval of length 𝐿 satisfying simultaneously 𝐹𝑠1ξ€Έπœ€<𝑔+2𝑠,𝐹2ξ€Έπœ€>πΊβˆ’2.(2.9) Now take πœ€2=πœ€/2𝐿, and we will prove that when πœβˆˆπ‘‡(𝑓,πœ€2), there is πœβˆˆπ‘‡(𝑓,πœ€). In fact for every π‘‘βˆˆπ‘…, we can choose 𝑠1 and 𝑠2 in the interval [𝑑,𝑑+𝐿] satisfying 𝐹(𝑠1)<𝑔+(πœ€/2) and 𝐹(𝑠2)>πΊβˆ’(πœ€/2). Hence for πœβˆˆπ‘‡(𝑓,πœ€2), there are, respectively, limsup|𝑑|β†’βˆž(𝐹(𝑑+𝜏)βˆ’πΉ(𝑑))=limsup|𝑑|β†’βˆžξ‚ΈπΉξ€·π‘ 1𝑠+πœβˆ’πΉ1ξ€Έ+ξ€œπ‘ 1π‘‘π‘“ξ€œ(𝑑)π‘‘π‘‘βˆ’π‘ 1+πœπ‘‘+πœπ‘“ξ‚Ήξ‚€πœ€(𝑑)𝑑𝑑>π‘”βˆ’π‘”+2ξ‚βˆ’πœ€2𝐿=βˆ’πœ€,limsup|𝑑|β†’βˆž(𝐹(𝑑+𝜏)βˆ’πΉ(𝑑))=limsup|𝑑|β†’βˆžξ‚ΈπΉξ€·π‘ 2𝑠+πœβˆ’πΉ2ξ€Έ+ξ€œπ‘ 2π‘‘ξ€œπ‘“(𝑑)π‘‘π‘‘βˆ’π‘ 2+πœπ‘‘+πœξ‚Ήξ‚€πœ€π‘“(𝑑)𝑑𝑑<πΊβˆ’πΊβˆ’2+πœ€2𝐿=πœ€.(2.10) So for πœβˆˆπ‘‡(𝑓,πœ€2), we have πœβˆˆπ‘‡(𝑓,πœ€); hence 𝐹(𝑑) is remotely almost periodic.

Proposition 2.4. Assume that 𝑓(𝑑) is remotely almost periodic. Then ∫(1/𝑇)π‘Žπ‘Ž+𝑇𝑓(𝑑)𝑑𝑑 converges as 𝑇→+∞ uniformly with respect to π‘Žβˆˆπ‘…. Moreover the limit does not depend on π‘Ž, and it is called the average of π‘“βˆƒβŸ¨π‘“βŸ©βˆΆ=lim𝑇→+∞1π‘‡ξ€œπ‘Žπ‘Ž+𝑇𝑓(𝑑)𝑑𝑑,uniformlywithrespecttoπ‘Žβˆˆπ‘….(2.11)

Proof. As 𝑓(𝑑)∈RAP(𝑅), then 𝑓(𝑑) is bounded, and for allπœ€>0, for all πœβˆˆπ‘‡(𝑓,πœ€), there exists 𝑠0>0, when |𝑑|>𝑠0,|𝑓(𝑑+𝜏)βˆ’π‘“(𝑑)|<πœ€. Let 𝐺=supπ‘‘βˆˆπ‘…|𝑓(𝑑)|, take πœ€>0, and assume that 𝑙=𝑙(πœ€/4) is an interval length of 𝑇(𝑓,πœ€/4). Take πœβˆˆπ‘‡(𝑓,πœ€/4)∩[π‘Ž,π‘Ž+𝑙]; then for any π‘Ž,π‘ βˆˆπ‘…||||ξ€œπ‘Žπ‘Ž+π‘ π‘“ξ€œ(𝑑)π‘‘π‘‘βˆ’π‘ 0||||=||||ξ‚΅ξ€œπ‘“(𝑑)𝑑t𝜏𝜏+π‘ βˆ’ξ€œπ‘ 0+ξ€œπ‘Ž+π‘ πœ+𝑠+ξ€œπœπ‘Žξ‚Ά||||β‰€ξ€œπ‘“(𝑑)𝑑𝑑𝑠0||||ξ€œπ‘“(𝑑+𝜏)βˆ’π‘“(𝑑)𝑑𝑑+π‘Ž+π‘ πœ+𝑠||||ξ€œπ‘“(𝑑)𝑑𝑑+𝜏0||||=ξ€œπ‘“(𝑑)𝑑𝑑𝑠00||||ξ€œπ‘“(𝑑+𝜏)βˆ’π‘“(𝑑)𝑑𝑑+𝑠𝑠0||||+ξ€œπ‘“(𝑑+𝜏)βˆ’π‘“(𝑑)π‘‘π‘‘π‘Ž+π‘ πœ+𝑠||𝑓||ξ€œ(𝑑)𝑑𝑑+𝜏0||𝑓||(𝑑)𝑑𝑑≀sup𝑠0ξ€»,𝑠||||⋅𝑓(𝑑+𝜏)βˆ’π‘“(𝑑)π‘ βˆ’π‘ 0ξ€Έξ€·+2𝐺𝑙+𝑠0ξ€Έ<πœ€4ξ€·π‘ βˆ’π‘ 0ξ€Έξ€·+2𝐺𝑙+𝑠0ξ€Έ,(2.12) so ||||1π‘‡ξ€œπ‘Žπ‘Ž+𝑇1𝑓(𝑑)π‘‘π‘‘βˆ’π‘‡ξ€œπ‘‡0||||β‰€πœ€π‘“(𝑑)𝑑𝑑4π‘‡π‘‡βˆ’π‘‡0ξ€Έ+ξ€·2𝐺𝑙+𝑇0𝑇||||1,(2.13)ξ€œπ‘›π‘‡0𝑛𝑇1𝑓(𝑑)π‘‘π‘‘βˆ’π‘‡ξ€œπ‘‡0||||=1𝑓(𝑑)𝑑𝑑𝑛|||||π‘›ξ“π‘˜=11π‘‡ξ‚Έξ€œπ‘˜π‘‡(π‘˜βˆ’1)π‘‡ξ€œπ‘“(𝑑)π‘‘π‘‘βˆ’π‘‡0ξ‚Ή|||||β‰€πœ€π‘“(𝑑)𝑑𝑑4π‘‡π‘‡βˆ’π‘‡0ξ€Έ+ξ€·2𝐺𝑙+𝑇0𝑇.(2.14) By passing 𝑛→+∞ in (2.14), we get ||||1βŸ¨π‘“βŸ©βˆ’π‘‡ξ€œπ‘‡0||||β‰€πœ€π‘“(𝑑)𝑑𝑑4π‘‡π‘‡βˆ’π‘‡0ξ€Έ+ξ€·2𝐺𝑙+𝑇0𝑇.(2.15) Using triangle inequality from (2.13) and (2.15) we deduce ||||1π‘‡ξ€œπ‘Žπ‘Ž+𝑇||||β‰€πœ€π‘“(𝑑)π‘‘π‘‘βˆ’βŸ¨π‘“βŸ©ξ€·2π‘‡π‘‡βˆ’π‘‡0ξ€Έ+ξ€·4𝐺𝑙+𝑇0𝑇<πœ€,(2.16) if only 𝑇>(8𝐺(𝑙+𝑇0)/πœ€)βˆ’π‘‡0. That is, when βˆ«π‘‡β†’βˆž,(1/𝑇)π‘Žπ‘Ž+𝑇𝑓(𝑑)𝑑𝑑 converges at βŸ¨π‘“βŸ© uniformly with respect to π‘Žβˆˆπ‘…. Moreover notice the identical equation 1π‘‡ξ€œπ‘Žπ‘Ž+𝑇1𝑓(𝑑)𝑑𝑑=π‘‡ξ€œπ‘‡0𝑓(𝑑+π‘Ž)𝑑𝑑.(2.17) This means that the limit does not depend on π‘Ž.

3. Remotely Almost Periodic Viscosity Solutions

In this section we get some results for remotely almost periodic viscosity solutions.

Definition 3.1. One says that π‘’βˆΆβ„π‘Γ—β„β†’β„ is remotely almost periodic in 𝑑 uniformly with respect to π‘₯ if 𝑒 is bounded and uniformly continuous in 𝑑 uniformly with respect to π‘₯ and for all πœ€>0, and there exists𝑙(πœ€)>0 such that all intervals of length 𝑙(πœ€) contain a number 𝜏 which is πœ€ remotely almost periodic for 𝑒(π‘₯,β‹…), for allπ‘₯βˆˆβ„π‘limsup|𝑑|β†’βˆž||||𝑒(π‘₯,𝑑+𝜏)βˆ’π‘’(π‘₯,𝑑)<πœ€,βˆ€(π‘₯,𝑑)βˆˆβ„π‘Γ—β„.(3.1)

3.1. Some Hypotheses and Theorems

In this section we list some usual hypotheses used for the uniqueness and existence results and present two properties of viscosity solutions.

First let us list some hypotheses in the stationary case:βˆ€0<𝑅<+∞,βˆƒπ›Ύπ‘…>0∢𝐻(π‘₯,𝑒,𝑝)βˆ’π»(π‘₯,𝑣,𝑝)β‰₯𝛾𝑅(π‘’βˆ’π‘£),βˆ€π‘₯βˆˆβ„π‘,βˆ’π‘…β‰€π‘£β‰€π‘’β‰€π‘…,π‘βˆˆβ„π‘,(3.2)βˆ€π‘…>0,βˆƒπ‘šπ‘…,lim𝑧→0π‘šπ‘…||||(𝑧)=0∢𝐻(π‘₯,𝑒,𝑝)βˆ’π»(𝑦,𝑒,𝑝)β‰€π‘šπ‘…ξ€·||||β‹…ξ€·||𝑝||,π‘₯βˆ’π‘¦1+ξ€Έξ€Έβˆ€π‘₯,π‘¦βˆˆβ„π‘,βˆ’π‘…β‰€π‘’β‰€π‘…,π‘βˆˆβ„π‘,(3.3)βˆ€0<𝑅<+∞,lim||𝑝||β†’+∞𝐻(π‘₯,𝑒,𝑝)=+∞,uniformlyfor(π‘₯,𝑒)βˆˆβ„π‘Γ—[]βˆ’π‘…,𝑅,(3.4)βˆ€0<𝑅<+∞,𝐻isuniformlycontinuousonℝ𝑁×[]Γ—βˆ’π‘…,𝑅𝐡𝑅,(3.5)βˆƒπ‘€>0∢𝐻(π‘₯,βˆ’π‘€,0)≀0≀𝐻(π‘₯,𝑀,0),βˆ€π‘₯βˆˆβ„π‘.(3.6) From [1] we know that hypotheses (3.2), (3.3) or (3.4), (3.5), (3.6) ensure the existence of a unique solution for the stationary equation (1.3). And more regularly (3.2) can be replaced by𝐻(π‘₯,𝑒,𝑝)βˆ’π»(π‘₯,𝑣,𝑝)β‰₯0,βˆ€π‘₯βˆˆβ„π‘,𝑣≀𝑒,π‘βˆˆβ„π‘(3.7) (which comes to taking 𝛾𝑅=0 in (3.2)).

When the Hamiltonian is time dependent the corresponding assumptions areβˆ€0<𝑅<+∞,βˆƒπ›Ύπ‘…>0∢𝐻(π‘₯,𝑑,𝑒,𝑝)βˆ’π»(π‘₯,𝑑,𝑣,𝑝)β‰₯𝛾𝑅(π‘’βˆ’π‘£),βˆ€π‘₯βˆˆβ„π‘,0≀𝑑≀𝑇,βˆ’π‘…β‰€π‘£β‰€π‘’β‰€π‘…,π‘βˆˆβ„π‘,(3.8)βˆ€π‘…>0,βˆƒπ‘šπ‘…βˆΆ||||𝐻(π‘₯,𝑑,𝑒,𝑝)βˆ’π»(𝑦,𝑑,𝑒,𝑝)β‰€π‘šπ‘…ξ€·||||β‹…ξ€·||𝑝||,π‘₯βˆ’π‘¦1+ξ€Έξ€Έβˆ€π‘₯,π‘¦βˆˆβ„π‘[],π‘‘βˆˆ0,𝑇,βˆ’π‘…β‰€π‘’β‰€π‘…,π‘βˆˆβ„π‘,wherelim𝑧→0π‘šπ‘…(𝑧)=0,(3.9)βˆ€0<𝑅<+∞,𝐻isuniformlycontinuousonℝ𝑁×[]Γ—[]Γ—0,π‘‡βˆ’π‘…,𝑅𝐡𝑅,(3.10)βˆƒπ‘€>0∢𝐻(π‘₯,𝑑,βˆ’π‘€,0)≀0≀𝐻(π‘₯,𝑑,𝑀,0),βˆ€π‘₯βˆˆβ„π‘[].,π‘‘βˆˆ0,𝑇(3.11) Now we present two results of viscosity solutions (see [1, 6, 7]).

Theorem 3.2. Assume that (3.8), (3.9), (3.10), and (3.11) hold (with π›Ύπ‘…βˆˆβ„, for all 𝑅>0). Then for every 𝑒0∈BUC(ℝ𝑁) there is a unique viscosity solution π‘’βˆˆBUC(ℝ𝑁×[0,𝑇]) of (1.2), for all 𝑇>0.

Theorem 3.3. Let 𝑒 be a bounded time periodic viscosity u.s.c. subsolution of πœ•π‘‘π‘’+𝐻(π‘₯,𝑑,𝑒,𝐷𝑒)=𝑓(π‘₯,𝑑) in ℝ𝑁×ℝ and 𝑣 a bounded time periodic viscosity l.s.c. supersolution of πœ•π‘‘π‘£+𝐻(π‘₯,𝑑,𝑣,𝐷𝑣)=𝑔(π‘₯,𝑑) in ℝ𝑁×ℝ, where 𝑓,π‘”βˆˆBUC(ℝ𝑁×ℝ) and 𝐻 are 𝑇 periodic such that (3.8), (3.9), and (3.10) hold. Then one has supπ‘₯βˆˆβ„π‘(𝑒(π‘₯,𝑑)βˆ’π‘£(π‘₯,𝑑))≀supπ‘ β‰€π‘‘ξ€œtssupπ‘₯βˆˆβ„π‘(𝑓(π‘₯,𝜎)βˆ’π‘”(π‘₯,𝜎))π‘‘πœŽ.(3.12) Moreover, the hypothesis (3.9) can be replaced by π‘’βˆˆπ‘Š1,∞(ℝ𝑁×ℝ) or π‘£βˆˆπ‘Š1,∞(ℝ𝑁×ℝ).

3.2. Uniqueness and Existence of Time Remotely Almost Periodic Viscosity Solutions

In this section we establish uniqueness and existence results for time remotely almost periodic viscosity solutions. For the uniqueness we have the more general result.

Proposition 3.4. Let 𝑒 a bounded u.s.c. viscosity subsolution of πœ•π‘‘π‘’+𝐻(π‘₯,𝑑,𝑒,𝐷𝑒)=𝑓(π‘₯,𝑑), in ℝ𝑁×ℝ and 𝑣 a bounded l.s.c. viscosity supersolution of πœ•π‘‘π‘£+𝐻(π‘₯,𝑑,𝑣,𝐷𝑣)=𝑔(π‘₯,𝑑), in ℝ𝑁×ℝ where 𝑓,π‘”βˆˆBUC(ℝ𝑁×ℝ) and (3.8), (3.9), (3.10) hold uniformly for π‘‘βˆˆβ„. Then one has for all π‘‘βˆˆβ„supπ‘₯βˆˆβ„π‘(𝑒(π‘₯,𝑑)βˆ’π‘£(π‘₯,𝑑))+β‰€π‘’βˆ’π›Ύπ‘‘ξ€œπ‘‘βˆ’βˆžsupπ‘₯βˆˆβ„π‘(𝑓(π‘₯,𝜎)βˆ’π‘”(π‘₯,𝜎))+π‘‘πœŽ.(3.13) Moreover hypotheses (3.9) can be replaced by π‘’βˆˆπ‘Š1,∞(ℝ𝑁×ℝ) or π‘£βˆˆπ‘Š1,∞(ℝ𝑁×ℝ).

The proof of this proposition is similar to Proposition 6.5 in [1]. Hence we do not prove it here.

Before we concentrate on the existence part, let us see two important lemmas first. Now take βˆ«β„Ž(𝑑)=π‘‘βˆ’βˆžπ‘’π›Ύ(πœŽβˆ’π‘‘)𝑓(𝜎)π‘‘πœŽ, where 𝛾>0 is a constant, π‘‘βˆˆβ„.

Lemma 3.5. If 𝑓(𝑑)∈SO(ℝ), then β„Ž(𝑑)∈SO(ℝ).

Proof. As 𝑓(𝑑)∈SO(ℝ), so for every πœβˆˆβ„lim|𝑑|β†’βˆž||||𝑓(𝑑+𝜏)βˆ’π‘“(𝑑)=0.(3.14) Now for every πœβˆˆβ„||β„Ž||=||||ξ€œ(𝑑+𝜏)βˆ’β„Ž(𝑑)𝑑+πœβˆ’βˆžπ‘’π›Ύ(πœŽβˆ’π‘‘βˆ’πœ)ξ€œπ‘“(𝜎)π‘‘πœŽβˆ’π‘‘βˆ’βˆžπ‘’π›Ύ(πœŽβˆ’π‘‘)||||=||||ξ€œπ‘“(𝜎)π‘‘πœŽ0βˆ’βˆžπ‘’π›ΎπœŽξ€œπ‘“(𝑑+𝜎+𝜏)π‘‘πœŽβˆ’0βˆ’βˆžπ‘’π›ΎπœŽ||||=||||ξ€œπ‘“(𝑑+𝜎)π‘‘πœŽ0βˆ’βˆžπ‘’π›ΎπœŽ[𝑓]||||β‰€ξ€œ(𝑑+𝜎+𝜏)βˆ’π‘“(𝑑+𝜎)π‘‘πœŽ0βˆ’βˆžπ‘’π›ΎπœŽ||||𝑓(𝑑+𝜎+𝜏)βˆ’π‘“(𝑑+𝜎)π‘‘πœŽβ‰€sup𝜎||||β‹…1𝑓(𝑑+𝜎+𝜏)βˆ’π‘“(𝑑+𝜎)𝛾,(3.15) hence lim|𝑑|β†’βˆž||||β„Ž(𝑑+𝜏)βˆ’β„Ž(𝑑)≀limsup|𝑑|β†’βˆž||||β‹…1𝑓(𝑑+𝜎+𝜏)βˆ’π‘“(𝑑+𝜎)𝛾=0.(3.16) Since we already know that 𝑓(𝑑)∈BUC(ℝ), we deduce also that β„Ž(𝑑)∈BUC(ℝ). That is, β„Ž(𝑑)∈SO(ℝ).

Lemma 3.6. If 𝑓(𝑑)∈RAP(ℝ), then β„Ž(𝑑)∈RAP(ℝ).

Proof. The main result in [8] proved that 𝑓(𝑑)∈RAP(ℝ) is the closed subalgebra in 𝐢(ℝ) created by AP(ℝ) and SO(ℝ). Hence, if 𝑓(𝑑)∈RAP(ℝ), for every πœ€>0, take πœ€1=π›Ύβ‹…πœ€, there exists 𝑔1,𝑔2βˆˆπ΄π‘ƒ(ℝ) and πœ‘1,πœ‘2∈SO(ℝ); hence β€–β€–ξ€Ίπ‘”π‘“βˆ’1+πœ‘1+𝑔2πœ‘2ξ€»β€–β€–<πœ€14.(3.17) If πœ‘2=0, consider a number 𝜏 which is an πœ€1/2 remotely almost period of 𝑔1: ||β„Ž||=||||ξ€œ(𝑑+𝜏)βˆ’β„Ž(𝑑)0βˆ’βˆžπ‘’π›ΎπœŽ[]||||β‰€ξ€œπ‘“(𝑑+𝜎+𝜏)βˆ’π‘“(𝑑+𝜎)π‘‘πœŽ0βˆ’βˆžπ‘’π›ΎπœŽ||||β‰€ξ€œπ‘“(𝑑+𝜎+𝜏)βˆ’π‘“(𝑑+𝜎)π‘‘πœŽ0βˆ’βˆžπ‘’π›ΎπœŽ||𝑔𝑓(𝑑+𝜎+𝜏)βˆ’1(𝑑+𝜎+𝜏)+πœ‘1ξ€»||+ξ€œ(𝑑+𝜎+𝜏)π‘‘πœŽ0βˆ’βˆžπ‘’π›ΎπœŽ||𝑔1(𝑑+𝜎+𝜏)βˆ’π‘”1||+ξ€œ(𝑑+𝜎)π‘‘πœŽ0βˆ’βˆžπ‘’π›ΎπœŽ||πœ‘1(𝑑+𝜎+𝜏)βˆ’πœ‘1||+ξ€œ(𝑑+𝜎)π‘‘πœŽ0βˆ’βˆžπ‘’π›ΎπœŽ||𝑔𝑓(𝑑+𝜎)βˆ’1(𝑑+𝜎)+πœ‘1ξ€»||<πœ€(𝑑+𝜎)π‘‘πœŽ1+πœ€4𝛾1+ξ€œ2𝛾0βˆ’βˆžπ‘’π›ΎπœŽ||πœ‘1(𝑑+𝜎+𝜏)βˆ’πœ‘1||πœ€(𝑑+𝜎)π‘‘πœŽ+1.4𝛾(3.18) By using Lemma 3.5 we deduce limsup|𝑑|β†’βˆž||||<πœ€β„Ž(𝑑+𝜏)βˆ’β„Ž(𝑑)1+πœ€4𝛾1+πœ€2𝛾14𝛾=πœ€.(3.19) Thus this proves that any πœ€1/2 remotely almost period of 𝑔1 is an πœ€ remotely almost period of β„Ž.
If πœ‘2β‰ 0, assume that 𝛿=min{πœ€1/4,πœ€1/(4β‹…β€–πœ‘2β€–)}, and take number 𝜏 which is a common 𝛿 remotely almost period of 𝑔1 and 𝑔2. We will prove that 𝜏 is an πœ€1/2 remotely almost period of (𝑔1+πœ‘1+𝑔2πœ‘2), and an πœ€ remotely almost period of β„Ž: ||𝑔2(𝑑+𝜎+𝜏)πœ‘2(𝑑+𝜎+𝜏)βˆ’π‘”2(𝑑+𝜎)πœ‘2||≀||𝑔(𝑑+𝜎)2(𝑑+𝜎+𝜏)πœ‘2(𝑑+𝜎+𝜏)βˆ’π‘”2(𝑑+𝜎+𝜏)πœ‘2||+||𝑔(𝑑+𝜎)2(𝑑+𝜎+𝜏)πœ‘2(𝑑+𝜎)βˆ’π‘”2(𝑑+𝜎)πœ‘2||≀‖‖𝑔(𝑑+𝜎)2β€–β€–β‹…||πœ‘2(𝑑+𝜎+𝜏)βˆ’πœ‘2||+β€–β€–πœ‘(𝑑+𝜎)2β€–β€–β‹…||𝑔2(𝑑+𝜎+𝜏)βˆ’π‘”2||.(𝑑+𝜎)(3.20) We have limsup|𝑑|β†’βˆž||𝑔2(𝑑+𝜎+𝜏)πœ‘2(𝑑+𝜎+𝜏)βˆ’π‘”2(𝑑+𝜎)πœ‘2||<πœ€(𝑑+𝜎)14.(3.21) Hence limsup|𝑑|β†’βˆž||𝑔1(𝑑+𝜎+𝜏)+πœ‘1(𝑑+𝜎+𝜏)+𝑔2(𝑑+𝜎+𝜏)πœ‘2ξ€»βˆ’ξ€Ίπ‘”(𝑑+𝜎+𝜏)1(𝑑+𝜎)+πœ‘1(𝑑+𝜎)+𝑔2(𝑑+𝜎)πœ‘2ξ€»||(𝑑+𝜎)≀limsup|𝑑|β†’βˆž||𝑔1(𝑑+𝜎+𝜏)βˆ’π‘”1||(𝑑+𝜎)+limsup|𝑑|β†’βˆž||πœ‘1(𝑑+𝜎+𝜏)βˆ’πœ‘1||(𝑑+𝜎)+limsup|𝑑|β†’βˆž||𝑔2(𝑑+𝜎+𝜏)πœ‘2(𝑑+𝜎+𝜏)βˆ’π‘”2(𝑑+𝜎)πœ‘2||<πœ€(𝑑+𝜎)14+πœ€14=πœ€12,||||≀||𝑔𝑓(𝑑+𝜎+𝜏)βˆ’π‘“(𝑑+𝜎)𝑓(𝑑+𝜎+𝜏)βˆ’1(𝑑+𝜎+𝜏)+πœ‘1(𝑑+𝜎+𝜏)+𝑔2(𝑑+𝜎+𝜏)πœ‘2ξ€»||+||𝑔(𝑑+𝜎+𝜏)1(𝑑+𝜎+𝜏)+πœ‘1(𝑑+𝜎+𝜏)+𝑔2(𝑑+𝜎+𝜏)πœ‘2ξ€»βˆ’ξ€Ίπ‘”(𝑑+𝜎+𝜏)1(𝑑+𝜎)+πœ‘1(𝑑+𝜎)+𝑔2(𝑑+𝜎)πœ‘2ξ€»||+||𝑔(𝑑+𝜎)1(𝑑+𝜎)+πœ‘1(𝑑+𝜎)+𝑔2(𝑑+𝜎)πœ‘2ξ€»||.(𝑑+𝜎)βˆ’π‘“(𝑑+𝜎)(3.22) So we have limsup|𝑑|β†’βˆž||β„Ž||(𝑑+𝜏)βˆ’β„Ž(𝑑)=limsup|𝑑|β†’βˆž||||ξ€œ0βˆ’βˆžπ‘’π›ΎπœŽ[𝑓]||||(𝑑+𝜎+𝜏)βˆ’π‘“(𝑑+𝜎)π‘‘πœŽβ‰€limsup|𝑑|β†’βˆž||𝑓||β‹…1(𝑑+𝜎+𝜏)βˆ’π‘“(𝑑+𝜎)𝛾<ξ‚€πœ€14+πœ€12+πœ€14⋅1𝛾=πœ€.(3.23) Since we already know that 𝑓(𝑑)∈BUC(ℝ), we deduce also that β„Ž(𝑑)∈BUC(ℝ). So this proves that β„Ž(𝑑)∈RAP(ℝ).

Now we concentrate on the existence part.

Proposition 3.7. Assume that π‘“βˆΆβ„β†’β„ is remotely almost periodic and that the Hamiltonian 𝐻=𝐻(π‘₯,𝑧,𝑝) satisfying the hypotheses (3.2), (3.3), (3.5), and there exists𝑀>0 such that 𝐻(π‘₯,βˆ’π‘€,0)≀𝑓(𝑑)≀𝐻(π‘₯,𝑀,0), for all (π‘₯,𝑑)βˆˆβ„π‘Γ—β„. Then there is a time remotely almost periodic viscosity solution in BUC(ℝ𝑁×ℝ) of πœ•π‘‘π‘’+𝐻(π‘₯,𝑒,𝐷𝑒)=𝑓(𝑑), in ℝ𝑁×ℝ.

Proof. We consider the unique viscosity solution of the problem πœ•π‘‘π‘’π‘›ξ€·+𝐻π‘₯,𝑒𝑛,𝐷𝑒𝑛=𝑓(𝑑),(π‘₯,𝑑)βˆˆβ„π‘Γ—][,π‘’βˆ’π‘›,+βˆžπ‘›(π‘₯,βˆ’π‘›)=0,π‘₯βˆˆβ„π‘(3.24) for all 𝑛β‰₯1. Such a solution exists by Theorem 3.2. Next we will prove that for all π‘‘βˆˆβ„, (𝑒𝑛(𝑑))𝑛β‰₯βˆ’π‘‘ converges to a remotely almost periodic viscosity solution of πœ•π‘‘π‘’+𝐻(π‘₯,𝑒,𝐷𝑒)=𝑓(𝑑), in ℝ𝑁×ℝ. Similar to the proof of Proposition 6.6 in [1], we obtain by fixing π‘‘βˆˆβ„ and 𝑛 large enough ||𝑒𝑛(π‘₯,𝑑)βˆ’π‘’π‘›(||π‘₯,𝑑+𝜏)≀2π‘€β‹…π‘’βˆ’π›Ύ(π‘‘βˆ’π‘‘π‘›)+π‘’βˆ’π›Ύπ‘‘ξ€œπ‘‘π‘‘π‘›π‘’π›ΎπœŽ||||𝑓(𝜎+𝜏)βˆ’π‘“(𝜎)π‘‘πœŽ.(3.25) By passing 𝑛→+∞ we have π‘‘π‘›β†’βˆ’βˆž, and therefore ||||β‰€ξ€œπ‘’(π‘₯,𝑑)βˆ’π‘’(π‘₯,𝑑+𝜏)π‘‘βˆ’βˆžπ‘’βˆ’π›Ύ(π‘‘βˆ’πœŽ)||||𝑓(𝜎+𝜏)βˆ’π‘“(𝜎)π‘‘πœŽ.(3.26) As 𝑓 is remotely almost periodic, using Lemma 3.6 we deduce limsup|𝑑|β†’βˆž||||𝑒(π‘₯,𝑑)βˆ’π‘’(π‘₯,𝑑+𝜏)≀limsup|𝑑|β†’βˆžξ€œπ‘‘βˆ’βˆžπ‘’π›Ύ(πœŽβˆ’π‘‘)||||𝑓(𝜎+𝜏)βˆ’π‘“(𝜎)π‘‘πœŽ<πœ€.(3.27) Since we already know that π‘’βˆˆBUC(ℝ𝑁×[π‘Ž,𝑏]), for all π‘Ž,π‘βˆˆβ„,π‘Žβ‰€π‘, by time remotely almost periodicity we deduce also that π‘’βˆˆBUC(ℝ𝑁×ℝ).

Now we will study the time remotely almost periodic viscosity solutions ofπœ•π‘‘π‘’+𝐻(π‘₯,𝑒,𝐷𝑒)=𝑓(𝑑),(π‘₯,𝑑)βˆˆβ„π‘Γ—β„,(3.28) for Hamiltonians satisfying (3.7). We introduce also the stationary equation1𝐻(π‘₯,𝑒,𝐷𝑒)=βŸ¨π‘“βŸ©βˆΆ=π‘‡ξ€œπ‘‡0𝑓(𝑑)𝑑𝑑,π‘₯βˆˆβ„π‘.(3.29) We have the following theorem for the existence of time remotely almost periodic viscosity solution.

Theorem 3.8. Assume that Hamiltonian H=𝐻(π‘₯,𝑧,𝑝) satisfies hypotheses (3.7), (3.4), (3.5), sup{|𝐻(π‘₯,0,0)|∢π‘₯βˆˆβ„}=𝐢<+∞ and 𝑓 is a time remotely almost periodic function such that ∫𝐹(𝑑)=𝑑0{𝑓(𝜎)βˆ’βŸ¨π‘“βŸ©}π‘‘πœŽ is bounded on ℝ. Then there is a bounded Lipschitz time remotely almost periodic viscosity solution of (3.28) if and only if there is a bounded viscosity solution of (3.29).

Proof. Assume that 𝑉 is a bounded viscosity of (3.29). We deduce that 𝑉 is a Lipschitz function as the Hamiltonian satisfies (3.4). For any 𝛼>0, take 𝑀𝛼=β€–π‘‰β€–πΏβˆž(ℝ𝑁)+(1/𝛼)(𝐢+β€–π‘“β€–πΏβˆž(ℝ)). By Propositions 3.4 and 3.7 we can construct the family of time remotely almost periodic solutions 𝑣𝛼 for π›Όξ€·π‘£π›Όξ€Έβˆ’π‘‰(π‘₯)+πœ•π‘‘π‘£π›Όξ€·+𝐻π‘₯,𝑣𝛼,𝐷𝑣𝛼=𝑓(𝑑),(π‘₯,𝑑)βˆˆβ„π‘Γ—β„.(3.30) Similar to Theorems 4.1 and 6.1 in [1], we can extract a sequence which converges uniformly on compact sets of ℝ𝑁×ℝ towards a bounded Lipschitz solution 𝑣 of (3.28). Next we will prove that 𝑣 is remotely almost periodic. By the hypotheses and Proposition 2.3 we deduce that 𝐹 is remotely almost periodic, and thus, for all πœ€>0, there is 𝑙(πœ€/2) such that any interval of length 𝑙(πœ€/2) contains an πœ€/2 remotely almost period of 𝐹. Take an interval of length 𝑙(πœ€/2) and 𝜏 an πœ€/2 remotely almost period of 𝐹 in this interval. We have for all 𝛼>0,(π‘₯,𝑑)βˆˆβ„π‘Γ—β„||𝑣𝛼(π‘₯,𝑑+𝜏)βˆ’π‘£π›Ό||≀||||(π‘₯,𝑑)supπ‘ β‰€π‘‘ξ€œπ‘‘π‘ ||||=||||{𝑓(𝜎+𝜏)βˆ’π‘“(𝜎)}π‘‘πœŽsupπ‘ β‰€π‘‘ξ‚»ξ€œπ‘‘+πœπ‘ +𝜏(ξ€œπ‘“(𝜎)βˆ’βŸ¨π‘“βŸ©)π‘‘πœŽβˆ’π‘‘π‘ (ξ‚Ό||||=||||𝑓(𝜎)βˆ’βŸ¨π‘“βŸ©)π‘‘πœŽsup𝑠≀𝑑||||{(𝐹(𝑑+𝜏)βˆ’πΉ(𝑑))βˆ’(𝐹(𝑠+𝜏)βˆ’πΉ(𝑠))}≀2sup𝑑||𝐹||.(𝑑+𝜏)βˆ’πΉ(𝑑)(3.31) After passing to the limit for π›Όβ†˜0 one gets |𝑣(π‘₯,𝑑+𝜏)βˆ’π‘£(π‘₯,𝑑)|≀2sup𝑑|𝐹(𝑑+𝜏)βˆ’πΉ(𝑑)|, and hence limsup|𝑑|β†’βˆž||||𝑣(π‘₯,𝑑+𝜏)βˆ’π‘£(π‘₯,𝑑)≀2limsup|𝑑|β†’βˆž||||𝐹(𝑑+𝜏)βˆ’πΉ(𝑑)β‰€πœ€.(3.32) By using the uniform continuity of 𝐹, we can prove exactly in the same manner that 𝑣 is continuous in 𝑑 uniformly with respect to π‘₯. The converse implication follows similarlyTheorem 4.1 in [1]; here we do not prove it.

3.3. Asymptotic Behaviour for Large Frequencies

In this section we study the asymptotic behaviour of time remotely almost periodic viscosity solutions ofπœ•π‘‘π‘’π‘›ξ€·+𝐻π‘₯,𝑒𝑛,𝐷𝑒𝑛=𝑓𝑛(𝑑),(π‘₯,𝑑)βˆˆβ„π‘Γ—β„,(3.33) where π‘“βˆΆβ„β†’β„ is a remotely almost periodic function. For all 𝑛β‰₯1 notice that 𝑓𝑛(𝑑)=𝑓(𝑛𝑑), for all π‘‘βˆˆβ„ is remotely almost periodic and has the same average as 𝑓. Now suppose that such a hypothesis existsβˆƒπ‘€>0suchthat𝐻(π‘₯,βˆ’π‘€,0)≀𝑓(𝑑),βˆ€(π‘₯,𝑑)βˆˆβ„π‘Γ—β„.(3.34)

Theorem 3.9. Let 𝐻=𝐻(π‘₯,𝑧,𝑝) be a Hamiltonian satisfying (3.7), (3.3), (3.5), (3.34) where 𝑓 is remotely almost periodic function. Suppose also that there is a bounded l.s.c viscosity supersolution 𝑉β‰₯βˆ’π‘€ of (3.29), that βˆ«π‘‘β†’πΉ(𝑑)=𝑑0{𝑓(𝑠)βˆ’βŸ¨π‘“βŸ©}𝑑𝑠 is bounded, and denote by 𝑉 the minimal stationary l.s.c. viscosity supersolution of (3.29), 𝑣𝑛 the time remotely almost periodic l.s.c. viscosity supersolution of (3.33). Then the sequence (𝑣𝑛)𝑛 converges uniformly on ℝ𝑁×ℝ towards 𝑉 and β€–π‘£π‘›βˆ’π‘‰β€–πΏβˆž(ℝ𝑁×ℝ)≀(2/𝑛)β€–πΉβ€–πΏβˆž(ℝ), for all 𝑛β‰₯1.

Proof. As 𝑣𝑛=sup𝛼>0𝑣𝑛,𝛼 is remotely almost periodic, we introduce 𝑀𝑛,𝛼(π‘₯,𝑑)=𝑣𝑛,𝛼(π‘₯,𝑑/𝑛), (π‘₯,𝑑)βˆˆβ„π‘Γ—β„, which is also remotely almost periodic. Similar to Theorem 5.1 in [1] and by using Theorem 3.3 we deduce that 𝑀𝑛,𝛼(π‘₯,𝑑)βˆ’π‘‰π›Ό(π‘₯)≀sup𝑠≀𝑑1π‘›ξ€œπ‘‘π‘ (2𝑓(𝜎)βˆ’βŸ¨π‘“βŸ©)π‘‘πœŽβ‰€π‘›β€–πΉβ€–πΏβˆž(ℝ),(3.35) and similarly 𝑉𝛼(π‘₯)βˆ’π‘€π‘›,𝛼(π‘₯,𝑑)≀(2/𝑛)β€–πΉβ€–πΏβˆž(ℝ), for all 𝑛β‰₯1. We have for all 𝑛≀1||𝑀𝑛,𝛼(π‘₯,𝑑)βˆ’π‘‰π›Ό||≀2(π‘₯)π‘›β€–πΉβ€–πΏβˆž(ℝ),(3.36) and after passing to the limit for π›Όβ†˜0 one gets for all (π‘₯,𝑑)βˆˆβ„π‘Γ—β„||𝑀𝑛||≀2(π‘₯,𝑑)βˆ’π‘‰(π‘₯)π‘›β€–πΉβ€–πΏβˆž(ℝ).(3.37) Finally we deduce that β€–π‘£π‘›βˆ’π‘‰β€–πΏβˆž(ℝ𝑁×ℝ)≀(2/𝑛)β€–πΉβ€–πΏβˆž(ℝ𝑁×ℝ) for all 𝑛β‰₯1.

Acknowledgment

This work was supported by National Science Foundation of China (Grant no. 11001152).