Table of Contents
ISRN Ceramics
Volume 2011 (2011), Article ID 510474, 9 pages
http://dx.doi.org/10.5402/2011/510474
Research Article

The Stiffness of Syntactic Metal-Matrix Composites: A Statistical Model

1Materials Science Department (DCM), Faculty of Science and Technology, New University of Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
2CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Received 29 September 2011; Accepted 19 October 2011

Academic Editor: Y. Waku

Copyright © 2011 J. D. Botas and H. Águas. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Toda, “Porous particle composites,” in Metal and Ceramic Matrix Composites, B. Cantor, F. Dunne, and I. Stone, Eds., vol. 20, pp. 350–366, Institute of Physics Publishing, London, UK, 2004. View at Google Scholar
  2. B. Paul, “Prediction of elastic constants of multiphase materials,” Transactions of the Metallurgical Society of AIME, vol. 218, pp. 36–41, 1960. View at Google Scholar
  3. J. D. Botas, A. Velhinho, and R. J. C. Silva, “Elastic behaviour of spherical particles reinforced metal-matrix composites,” Materials Science Forum, vol. 587-588, pp. 202–206, 2008. View at Google Scholar · View at Scopus
  4. J. D. Botas, A. Velhinho, and R. J. C. Silva, “A theoretical approach to the elastic behaviour of compact and hollow spherical particles reinforced metal-matrix composites,” International Journal of Materials Research, vol. 101, no. 6, pp. 752–757, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metallurgica et Materialia, vol. 21, no. 5, pp. 571–574, 1973. View at Publisher · View at Google Scholar
  6. Y. Benveniste, “A new approach to the application of Mori-Tanaka's theory in composite materials,” Mechanics of Materials, vol. 6, no. 2, pp. 147–157, 1987. View at Google Scholar · View at Scopus
  7. R. M. Christensen and K. H. Lo, “Solutions for effective shear properties in three phase sphere and cylinder models,” Journal of the Mechanics and Physics of Solids, vol. 27, no. 4, pp. 315–330, 1979. View at Google Scholar · View at Scopus
  8. S. Torquato, “Effective stiffness tensor of composite media: II. Applications to isotropic dispersions,” Journal of the Mechanics and Physics of Solids, vol. 46, no. 8, pp. 1411–1440, 1998. View at Google Scholar · View at Scopus
  9. S. Torquato, “Random heterogeneous media: microstructure and improved bounds on effective properties,” Applied Mechanics Reviews, vol. 44, no. 2, pp. 37–76, 1991. View at Publisher · View at Google Scholar
  10. W. J. Drugan and J. R. Willis, “A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites,” Journal of the Mechanics and Physics of Solids, vol. 44, no. 4, pp. 497–524, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. W. J. Drugan, “Micromechanics-based variational estimates for a higher-order nonlocal constitutive equation and optimal choice of effective moduli for elastic composites,” Journal of the Mechanics and Physics of Solids, vol. 48, no. 6, pp. 1359–1387, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Hartmann, I. Crossmann, K. Reindel, and R. F. Singer, “Behaviour of composite structures,” in Metal Foams and Porous Metal Structures, J. Banhart, M. F. Ashby, and N. A. Fleck, Eds., pp. 331–336, Metall Innovation Technologie (MIT), Bremen, Germany, 1999. View at Google Scholar
  13. H. Toda, H. Kagajo, K. Hosoi et al., “Evaluation of mechanical properties of hollow particle reinforced composites and analyses aimed at their improvement,” Journal of the Society of Materials Science, Japan, vol. 50, no. 5, pp. 474–481, 2001. View at Google Scholar · View at Scopus
  14. J. Segurado and J. Llorca, “A numerical approximation to the elastic properties of sphere-reinforced composites,” Journal of the Mechanics and Physics of Solids, vol. 50, no. 10, pp. 2107–2121, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. C. Fischer-Cripps, Introduction to Contact Mechanics, Springer, New York, NY, USA, 2000.
  16. A. R. Bunsell and J. Renard, “Fundamentals of fibre reinforced composite materials,” in Series in Materials Science and Engineering, B. Cantor, M. J. Goringe, and E. Ma, Eds., pp. 66–71, Institute of Physics Publishing, London, UK, 2005. View at Google Scholar