Table of Contents
ISRN Dermatology
Volume 2011, Article ID 549870, 16 pages
http://dx.doi.org/10.5402/2011/549870
Review Article

Biologicals and Fetal Cell Therapy for Wound and Scar Management

1Cellular Therapy Unit, Department of Musculoskeletal Medicine, University Hospital of Lausanne, CHUV/UNIL, PAV 03, 1011 Lausanne, Switzerland
2Office of Dermatology and Angiology, Place Benjamin Constant 2, 1005 Lausanne, Switzerland
3Department of Plastic and Reconstructive Surgery, University Hospital of Lausanne, CHUV/UNIL, BH 10, 1011 Lausanne, Switzerland
4Department of Pediatric Surgery, University Hospital of Lausanne, CHUV/UNIL, BH 10, 1011 Lausanne, Switzerland
5Biomechanical Orthopedics Laboratory, Swiss Federal Institute of Technology, EPFL, 1015 Lausanne, Switzerland

Received 27 January 2011; Accepted 16 March 2011

Academic Editors: B. Amichai, B. Gesser, D. V. Messadi, E. Pasmatzi, and A. Zalewska

Copyright © 2011 Nathalie Hirt-Burri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Limat, D. Mauri, and T. Hunziker, “Successful treatment of chronic leg ulcers with epidermal equivalents generated from cultured autologous outer root sheath cells,” Journal of Investigative Dermatology, vol. 107, no. 1, pp. 128–135, 1996. View at Google Scholar · View at Scopus
  2. P. Bianco and P. G. Robey, “Stem cells in tissue engineering,” Nature, vol. 414, no. 6859, pp. 118–121, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. K. M. Bullard, M. T. Longaker, and H. P. Lorenz, “Fetal wound healing: current biology,” World Journal of Surgery, vol. 27, no. 1, pp. 54–61, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. A. Kaviani, T. E. Perry, A. Dzakovic, R. W. Jennings, M. M. Ziegler, and D. O. Fauza, “The amniotic fluid as a source of cells for fetal tissue engineering,” Journal of Pediatric Surgery, vol. 36, no. 11, pp. 1662–1665, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Kaviani, T. E. Perry, C. M. Barnes et al., “The placenta as a cell source in fetal tissue engineering,” Journal of Pediatric Surgery, vol. 37, no. 7, pp. 995–999, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. C. H. Wu, G. Y. Chang, W. C. Chang, C. T. Hsu, and R. S. Chen, “Wound healing effects of porcine placental extracts on rats with thermal injury,” British Journal of Dermatology, vol. 148, no. 2, pp. 236–245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Hohlfeld, A. De Buys Roessingh, N. Hirt-Burri et al., “Tissue engineered fetal skin constructs for paediatric burns,” The Lancet, vol. 366, no. 9488, pp. 840–842, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. S. de Buys Roessingh, J. Hohlfeld, C. Scaletta et al., “Development, characterization, and use of a fetal skin cell bank for tissue engineering in wound healing,” Cell Transplantation, vol. 15, no. 8-9, pp. 823–834, 2006. View at Google Scholar · View at Scopus
  9. A. A. Ramelet, N. Hirt-Burri, W. Raffoul et al., “Chronic wound healing by fetal cell therapy may be explained by differential gene profiling observed in fetal versus old skin cells,” Experimental Gerontology, vol. 44, no. 3, pp. 208–218, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. Quintin, N. Hirt-Burri, C. Scaletta, C. Schizas, D. P. Pioletti, and L. A. Laurent-Applegate, “Consistency and safety of cell banks for research and clinical use: preliminary analysis of fetal skin banks,” Cell Transplantation, vol. 16, no. 7, pp. 675–684, 2007. View at Google Scholar · View at Scopus
  11. N. Hirt-Burri, C. Scaletta, S. Gerber, D. P. Pioletti, and L. A. Applegate, “Wound-healing gene family expression differences between fetal and foreskin cells used for bioengineered skin substitutes,” Artificial Organs, vol. 32, no. 7, pp. 509–518, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. L. A. Applegate, C. Scaletta, N. Hirt-Burri, W. Raffoul, and D. Pioletti, “Whole-cell bioprocessing of human fetal cells for tissue engineering of skin,” Skin Pharmacology and Physiology, vol. 22, no. 2, pp. 63–73, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. P. Curran and G. L. Plosker, “Bilayered bioengineered skin substitute (Apligraf®): a review of its use in the treatment of venous leg ulcers and diabetic foot ulcers,” BioDrugs, vol. 16, no. 6, pp. 439–455, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Kuroyanagi, N. Yamada, R. Yamashita, and E. Uchinuma, “Tissue-engineered product: allogeneic cultured dermal substitute composed of spongy collagen with fibroblasts,” Artificial Organs, vol. 25, no. 3, pp. 180–186, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Fimiani, E. Pianigiani, F. C. Di Simplicio et al., “Other uses of homologous skin grafts and skin bank bioproducts,” Clinics in Dermatology, vol. 23, no. 4, pp. 396–402, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. K. W. Ng, H. L. Khor, and D. W. Hutmacher, “In vitro characterization of natural and synthetic dermal matrices cultured with human dermal fibroblasts,” Biomaterials, vol. 25, no. 14, pp. 2807–2818, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. V. Falanga, D. Margolis, O. Alvarez et al., “Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent,” Archives of Dermatology, vol. 134, no. 3, pp. 293–300, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Waymack, R. G. Duff, and M. Sabolinski, “The effect of a tissue engineered bilayered living skin analog, over meshed split-thickness autografts on the healing of excised burn wounds,” Burns, vol. 26, no. 7, pp. 609–619, 2000. View at Publisher · View at Google Scholar
  19. B. Coulomb, C. Lebreton, and L. Dubertret, “Influence of human dermal fibroblasts on epidermalization,” Journal of Investigative Dermatology, vol. 92, no. 1, pp. 122–125, 1989. View at Google Scholar · View at Scopus
  20. B. Coulomb, L. Friteau, J. Baruch et al., “Advantage of the presence of living dermal fibroblasts within in vitro reconstructed skin for grafting in humans,” Plastic and Reconstructive Surgery, vol. 101, no. 7, pp. 1891–1903, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. H. A. Rakhorst, S. J. Posthumus-Van Sluijs, W. M. W. Tra et al., “Fibroblasts accelerate culturing of mucosal substitutes,” Tissue Engineering, vol. 12, no. 8, pp. 2321–2331, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. J. F. Hansbrough, D. W. Mozingo, G. P. Kealey, M. Davis, A. Gidner, and G. D. Gentzkow, “Clinical trials of a biosynthetic temporary skin replacement, dermagraft-transitional covering, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds,” Journal of Burn Care and Rehabilitation, vol. 18, no. 1, pp. 43–51, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. D. J. Wainwright, “Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns,” Burns, vol. 21, no. 4, pp. 243–248, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. R. J. Snyder, “Treatment of nonhealing ulcers with allografts,” Clinics in Dermatology, vol. 23, no. 4, pp. 388–395, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. E. V. Badiavas, D. Paquette, P. Carson, and V. Falanga, “Human chronic wounds treated with bioengineered skin: histologic evidence of host-graft interactions,” Journal of the American Academy of Dermatology, vol. 46, no. 4, pp. 524–530, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. R. L. Sheridan and R. J. Choucair, “Acellular allogenic dermis does not hinder initial engraftment in burn wound resurfacing and reconstruction,” Journal of Burn Care and Rehabilitation, vol. 18, no. 6, pp. 496–499, 1997. View at Google Scholar · View at Scopus
  27. S. Ichioka, S. Kouraba, N. Sekiya, N. Ohura, and T. Nakatsuka, “Bone marrow-impregnated collagen matrix for wound healing: experimental evaluation in a microcirculatory model of angiogenesis, and clinical experience,” British Journal of Plastic Surgery, vol. 58, no. 8, pp. 1124–1130, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. A. Atala, “Recent developments in tissue engineering and regenerative medicine,” Current Opinion in Pediatrics, vol. 18, no. 2, pp. 167–171, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. P. De Coppi, G. Bartsch, M. M. Siddiqui et al., “Isolation of amniotic stem cell lines with potential for therapy,” Nature Biotechnology, vol. 25, no. 1, pp. 100–106, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. I. Jones, L. Currie, and R. Martin, “A guide to biological skin substitutes,” British Journal of Plastic Surgery, vol. 55, no. 3, pp. 185–193, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. S. S. Osswald, D. M. Elston, and P. S. Vogel, “Giant right plantar keloid treated with excision and tissue-engineered allograft,” Journal of the American Academy of Dermatology, vol. 48, no. 1, pp. 131–134, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. T. Hasegawa, Y. Suga, M. Mizoguchi et al., “Clinical trial of allogeneic cultured dermal substitute for the treatment of intractable skin ulcers in 3 patients with recessive dystrophic epidermolysis bullosa,” Journal of the American Academy of Dermatology, vol. 50, no. 5, pp. 803–804, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. M. Fimiani, E. Pianigiani, F. C. Di Simplicio et al., “Other uses of homologous skin grafts and skin bank bioproducts,” Clinics in Dermatology, vol. 23, no. 4, pp. 396–402, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. E. N. Mostow, G. D. Haraway, M. Dalsing, J. P. Hodde, and D. King, “Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial,” Journal of Vascular Surgery, vol. 41, no. 5, pp. 837–843, 2005. View at Publisher · View at Google Scholar · View at PubMed
  35. W. H. Eaglstein, M. Iriondo, and K. Laszlo, “A composite skin substitute (graftskin) for surgical wounds: a clinical experience,” Dermatologic Surgery, vol. 21, no. 10, pp. 839–843, 1995. View at Google Scholar · View at Scopus
  36. G. G. Gallico, N. E. O'Connor, C. C. Compton, J. P. Remensnyder, O. Kehinde, and H. Green, “Cultured epithelial autografts for giant congenital nevi,” Plastic and Reconstructive Surgery, vol. 84, no. 1, pp. 1–9, 1989. View at Google Scholar · View at Scopus
  37. D. M. Carter, A. N. Lin, and M. C. Varghese, “Treatment of junctional epidermolysis bullosa with epidermal autografts,” Journal of the American Academy of Dermatology, vol. 17, no. 2, pp. 246–250, 1987. View at Google Scholar
  38. P. G. Shakespeare, “The role of skin substitutes in the treatment of burn injuries,” Clinics in Dermatology, vol. 23, no. 4, pp. 413–418, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. N. Kashiwa, O. Ito, T. Ueda, K. Kubo, H. Matsui, and Y. Kuroyanagi, “Treatment of full-thickness skin defect with concomitant grafting of 6-fold extended mesh auto-skin and allogeneic cultured dermal substitute,” Artificial Organs, vol. 28, no. 5, pp. 444–450, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. J. Still, P. Glat, P. Silverstein, J. Griswold, and D. Mozingo, “The use of a collagen sponge/living cell composite material to treat donor sites in burn patients,” Burns, vol. 29, no. 8, pp. 837–841, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. E. S. Y. Chan, P. K. Lam, C. T. Liew, H. C. H. Lau, R. S. C. Yen, and W. W. K. King, “A new technique to resurface wounds with composite biocompatible epidermal graft and artificial skin,” Journal of Trauma, vol. 50, no. 2, pp. 358–362, 2001. View at Google Scholar · View at Scopus
  42. S. R. Beanes, F. Y. Hu, C. Soo et al., “Confocal microscopic analysis of scarless repair in the fetal rat: defining the transition,” Plastic and Reconstructive Surgery, vol. 109, no. 1, pp. 160–170, 2002. View at Google Scholar · View at Scopus
  43. D. L. Cass, M. Meuli, and N. S. Adzick, “Scar wars: implications of fetal wound healing for the pediatric burn patient,” Pediatric Surgery International, vol. 12, no. 7, pp. 484–489, 1997. View at Publisher · View at Google Scholar · View at Scopus
  44. J. R. Armstrong and M. W. J. Ferguson, “Ontogeny of the skin and the transition from scar-free to scarring phenotype during wound healing in the pouch young of a marsupial, Monodelphis domestica,” Developmental Biology, vol. 169, no. 1, pp. 242–260, 1995. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. C. Dang, K. Ting, C. Soo, M. T. Longaker, and H. P. Lorenz, “Fetal wound healing current perspectives,” Clinics in Plastic Surgery, vol. 30, no. 1, pp. 13–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. S. R. Beanes, C. Dang, C. Soo, and K. Ting, “Skin repair and scar formation: the central role of TGF-beta,” Expert reviews in molecular medicine, vol. 5, no. 8, pp. 1–22, 2003. View at Google Scholar · View at Scopus
  47. R. Y. Lin and N. S. Adzick, “The role of the fetal fibroblast and transforming growth factor-β in a model of human fetal wound repair,” Seminars in Pediatric Surgery, vol. 5, no. 3, pp. 165–174, 1996. View at Google Scholar · View at Scopus
  48. M. Shah, D. M. Foreman, and M. W. J. Ferguson, “Neutralisation of TGF-β and TGF-β or exogenous addition of TGF-β to cutaneous rat wounds reduces scarring,” Journal of Cell Science, vol. 108, no. 3, pp. 985–1002, 1995. View at Google Scholar · View at Scopus
  49. M. Shah, D. M. Foreman, and M. W. J. Ferguson, “Control of scarring in adult wounds by neutralising antibody to transforming growth factor β,” The Lancet, vol. 339, no. 8787, pp. 213–214, 1992. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Wu, A. Siddiqui, D. E. Morris, D. A. Cox, S. I. Roth, and T. A. Mustoe, “Transforming growth factor β3 (TGFβ3) accelerates wound healing without alteration of scar prominence: histologic and competitive reverse- transcription-polymerase chain reaction studies,” Archives of Surgery, vol. 132, no. 7, pp. 753–760, 1997. View at Google Scholar · View at Scopus
  51. O. Okamoto, S. Fujiwara, M. Abe, and Y. Sato, “Dermatopontin interacts with transforming growth factor β and enhances its biological activity,” Biochemical Journal, vol. 337, no. 3, pp. 537–541, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Kuroda, O. Okamoto, and H. Shinkai, “Dermatopontin expression is decreased in hypertrophic scar and systemic sclerosis skin fibroblasts and is regulated by transforming growth factor- β1, interleukin-4, and matrix collagen,” Journal of Investigative Dermatology, vol. 112, no. 5, pp. 706–710, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. S. Kaiser, P. Schirmacher, A. Philipp et al., “Induction of bone morphogenetic protein-6 in skin wounds. Delayed reepitheliazation and scar formation in BMP-6 overexpressing transgenic mice,” Journal of Investigative Dermatology, vol. 111, no. 6, pp. 1145–1152, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. E. J. Stelnicki, V. Doolabh, S. Lee et al., “Nerve dependency in scarless fetal wound healing,” Plastic and Reconstructive Surgery, vol. 105, no. 1, pp. 140–147, 2000. View at Google Scholar · View at Scopus
  55. K. L. Christman, Q. Fang, A. J. Kim et al., “Pleiotrophin induces formation of functional neovasculature in vivo,” Biochemical and Biophysical Research Communications, vol. 332, no. 4, pp. 1146–1152, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. G. Dennis Jr., B. T. Sherman, D. A. Hosack et al., “DAVID: database for annotation, visualization, and integrated discovery,” Genome Biology, vol. 4, no. 5, p. P3, 2003. View at Google Scholar · View at Scopus
  58. W. Chen, X. Fu, S. Ge et al., “Profiling of genes differentially expressed in a rat of early and later gestational ages with high-density oligonucleotide DNA array,” Wound Repair and Regeneration, vol. 15, no. 1, pp. 147–155, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. EU, “Advanced therapy medicinal products amending Directive 2001/83/EC and Regulation (EC) no. 726/2004,” In: Parliament, editor. Regulation (EC) no. 1394/2007, 2007.
  60. EU, “Advanced therapy medicinal products amending Directive 2001/83/EC and Regulation (EC) no. 726/2004,” In: Parliament, editor. Regulation (EC) no. 1394/2007, 2007.
  61. EU, “Community code relating to medicinal products for hum use,” In: Parliament E, editor. Directive 2001/83/EC, 2001.
  62. EU, “Setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells,” In: Parliament E, editor. Directive 2004/23/EC, 2004.
  63. EU, “Implementing Directive 2004/23/EC of the European Parliament and of the Council as regards certain technical requirements for the donation, procurement and testing of human tissues and cells,” In: Parliament E, editor. Directive 2006/17/EC, 2006.
  64. EU, “Implementing Directive 2004/23/EC of the European Parliament and of the Council as regards traceability requirements, notification of serious adverse reactions and events and certain technical requirements for the coding, processing, preservation, storage and distribution of human tissues and cells,” In: Parliament E, editor. Directive 2006/86/EC, 2006.
  65. FDA, “Human cells, tissues, and cellular and tissue-based products,” 21 CFR 1271, 2006.
  66. M. Heinonen, O. Oila, and K. Nordström, “Current issues in the regulation of human tissue-engineering products in the European Union,” Tissue Engineering, vol. 11, no. 11-12, pp. 1905–1911, 2005. View at Publisher · View at Google Scholar · View at PubMed
  67. L. Trommelmans, J. Selling, and K. Dierickx, “A critical assessment of the directive on tissue engineering of the European Union,” Tissue Engineering, vol. 13, no. 4, pp. 667–672, 2007. View at Publisher · View at Google Scholar
  68. SwissMedics, “Swiss Federal Council Transplantation Law,” TxL; SR 81021, 2007.
  69. PMP/ICH, “Note for guidance on quality of biotechnological products: derivation and characterisation of cell substrates used for production of biotechnological/biological products,” CPMP/ICH/294/95, 2001.