Abstract

We consider a nondivergent elliptic equation of second order whose leading coefficients are from some weight space. The sufficient condition of removability of a compact with respect to this equation in the weight space of HΓΆlder functions was found.


Let 𝐷 be a bounded domain situated in 𝑛-dimensional Euclidean space 𝐸𝑛 of the points π‘₯=(π‘₯1,…,π‘₯𝑛),𝑛β‰₯3,andletπœ•π· be its boundary. Consider in 𝐷 the following elliptic equation:ℒ𝑒=𝑛𝑖,𝑗=1π‘Žπ‘–π‘—(π‘₯)𝑒𝑖𝑗+𝑛𝑖=1𝑏𝑖(π‘₯)𝑒𝑖+𝑐(π‘₯)𝑒=0,(1) in supposition that β€–π‘Žπ‘–π‘—(π‘₯)β€– is a real symmetric matrix, moreover πœ”(π‘₯) is a positive measurable function satisfying the doubling condition: for concentric balls 𝐡π‘₯𝑅 or 𝑅 and 2𝑅 radius, there exists such a constant π›Ύπœ”ξ€·π΅π‘₯𝑅β‰₯π›Ύπœ”ξ€·π΅π‘₯2𝑅,(2) where for the measurable sets 𝐸. πœ”(𝐸) means βˆ«πΈπœ”(𝑦)𝑑𝑦𝛾||πœ‰||2πœ”(π‘₯)≀𝑛𝑖,𝑗=1π‘Žπ‘–π‘—(π‘₯)πœ‰π‘–πœ‰π‘—β‰€π›Ύβˆ’1πœ”(π‘₯)||πœ‰||2;πœ‰βˆˆπΈπ‘›,π‘₯∈𝐷,(3)π‘Žπ‘–π‘—(π‘₯)∈𝐢1πœ”ξ‚€π·ξ‚;𝑖,𝑗,1,…,𝑛,(4)||𝑏𝑖(π‘₯)||≀𝑏0;βˆ’π‘0≀𝑐(π‘₯)≀0;𝑖=1,…,𝑛;π‘₯∈𝐷.(5) Here 𝑒𝑖=πœ•π‘’/πœ•π‘₯𝑖,𝑒𝑖𝑗=πœ•2𝑒/πœ•π‘₯π‘–πœ•π‘₯𝑗;𝑖,𝑗=1,…,𝑛;π›Ύβˆˆ(0,1] and 𝑏0β‰₯0 are constants. Besides we will suppose that the lower coefficients of the operator β„’ are measurable functions in 𝐷. Let πœ†βˆˆ(0,1) be a number. Denote by 𝐢0,πœ†(𝐷) a Banach space of the functions 𝑒(π‘₯) defined in 𝐷 with the finite norm;β€–π‘’β€–πΆπœ†πœ”(𝐷)=supπ‘₯βˆˆπ·πœ”(π‘₯)||𝑒(π‘₯)||+supπ‘₯,π‘¦βˆˆπ·π‘₯≠𝑦||𝑒(π‘₯)βˆ’π‘’(𝑦)||πœ”||π‘₯βˆ’π‘¦||πœ†.(6)

The compact πΈβŠ‚π· is called removable with respect to (1) in the space πΆπœ†πœ”(𝐷) if fromℒ𝑒=0,π‘₯∈𝐷⧡𝐸,π‘’βˆ£πœ•π·β§΅πΈ=0,𝑒(π‘₯)βˆˆπΆπœ†πœ”(𝐷),(7) it follows that 𝑒(π‘₯)≑0 in 𝐷.

The aim of the given paper is finding sufficient condition of removability of a compact with respect to (1) in the space πΆπœ†πœ”(𝐷). This problem have been investigated by many researchers. For the Laplace equation the corresponding result was found by Carleson [1]. Concerning the second-order elliptic equations of divergent structure, we show in this direction the papers [2, 3]. For a class of nondivergent elliptic equations of the second order with discontinuous coefficients the removability condition for a compact in the space Cπœ†(𝐷) was found in [4]. mention also papers [5–7] in which the conditions of removability for a compact in the space of continuous functions have been obtained. The removable sets of solutions of the second-order elliptic and parabolic equations in nondivergent form were considered in [8–10]. In [11], KilpelΣ“inen and Zhong have studied the divergent quasilinear equation without minor members and proved the removability of a compact. Removable sets for pointwise solutions of elliptic partial differential equations were found by Diederich [12]. Removable singularities of solutions of linear partial differential equations were considered in [13]. Removable sets at the boundary for subharmonic functions have been investigated by Dahlberg [14]. Denote by 𝐡𝑅(𝑧) and 𝑆𝑅(𝑧) the ball {π‘₯∢|π‘₯βˆ’π‘§|<𝑅} and the sphere

{π‘₯∢|π‘₯βˆ’π‘§|=𝑅} of radius 𝑅 with the center at the point π‘§βˆˆπΈπ‘› respectively. We’ll need the following generalization of mean value theorem belonging to Gerver and Landis [15] in weight case.

Lemma 1. Let the domain 𝐺 be situated between the spheres 𝑆𝑅(0)and 𝑆2𝑅(0), moreover let the intersection πœ•πΊβˆ©{π‘₯βˆΆπ‘…<|π‘₯|<2𝑅}be a smooth surface. Further, let in 𝐺 the uniformly positive definite matrix β€–π‘Žπ‘–π‘—(π‘₯)β€–;𝑖,𝑗=1,…,𝑛 and the function 𝑒(π‘₯)∈𝐢2(𝐺)∩𝐢1πœ”(𝐺) be given. Then there exists the piecewise smooth surface Σ  dividing in 𝐺 the spheres 𝑆𝑅(0) and 𝑆2𝑅(0)such that ξ€œΞ£πœ”|||πœ•π‘’πœ•πœˆ|||𝑑𝑠≀𝐾oscuπΊβ‹…πœ”(𝐺)𝑅2.(8) Here 𝐾>0 is a constant depending only on the matrix β€–π‘Žπ‘–π‘—(π‘₯)β€–and 𝑛, and πœ•π‘’/πœ•πœˆ is a derivative by a conormal determined by the equality πœ•π‘’(π‘₯)πœ•πœˆ=𝑛𝑖,𝑗=1π‘Žπ‘–π‘—(π‘₯)πœ•π‘’(π‘₯)πœ•π‘₯𝑖cos𝑛,π‘₯𝑗1/2,(9) where cos(𝑛,π‘₯𝑗);𝑗=1,…,𝑛 are direction cosines of a unit external normal vector to Ξ£.

Proof. Let πΊβŠ‚π‘…π‘› be a bounded domain 𝑓(π‘₯)∈𝐢2(𝐺). Then there exists a finite number of balls {𝐡xπœˆπ‘Ÿπœˆ},𝜈=1,2,…,𝑁 which cover 𝑄𝑓 and such that if we denote by π‘†πœˆ, the surface of 𝜈th ball, then π‘ξ“πœˆ=1ξ€œπ‘†πœˆπœ”(π‘₯)||βˆ‡π‘“||𝑑π‘₯<πœ€.(10)
Decompose 𝑂𝑓 into two parts: 𝑂𝑓=π‘‚ξ…žπ‘“βˆͺπ‘‚ξ…žξ…žπ‘“, where π‘‚ξ…žπ‘“ is a set of points 𝑂𝑓 for which βˆ‡2𝑓≠0,π‘‚ξ…žξ…žπ‘“ is a set of points for which βˆ‡2𝑓=0.
The set π‘‚ξ…žπ‘“ has 𝑛-dimensional Lebesgue measure equal zero, as on the known implicit function theorem, the π‘‚ξ…žπ‘“ lies on a denumerable number of surfaces of dimension π‘›βˆ’1. If we use the absolute continuity of integral πœ”(𝐷)=ξ€œπ·πœ”(π‘₯)𝑑π‘₯(11) with respect to Lebesque measure 𝐷 and the above said, we get that the set π‘‚ξ…žπ‘“ may be included into the set 𝐷 for which πœ”(𝐷)<πœ‚,πœ‚>0 will be chosen later. Let for each point π‘₯βˆˆπ‘‚ξ…žπ‘“, there exist such π‘Ÿπ‘₯ that 𝐡π‘₯π‘Ÿπ‘₯ and 𝐡π‘₯6π‘Ÿπ‘₯ are contained in π·βŠ‚πΊ. Then ξ€œ6π‘Ÿπ‘₯5π‘Ÿπ‘₯π‘‘π‘Ÿξ€œπ‘†π‘₯π‘Ÿπœ”(𝜎)π‘‘πœŽβ‰€πœ”ξ‚€π΅π‘₯6π‘Ÿπ‘₯,(12) therefore there exists such 5π‘Ÿπ‘₯≀𝑑≀6π‘Ÿπ‘₯ that π‘Ÿπ‘₯ξ€œπ‘†π‘₯π‘Ÿπœ”(𝜎)π‘‘πœŽβ‰€πœ”ξ‚€π΅π‘₯6π‘Ÿπ‘₯.(13) Then ξ€œπ‘†π‘₯π‘Ÿπœ”(𝜎)||βˆ‡π‘“||π‘‘πœŽβ‰€πΆπ‘‘ξ€œπ‘†π‘₯π‘Ÿπœ”(𝜎)π‘‘πœŽβ‰€(6𝐢)π‘Ÿξ‚΅π‘Ÿπ‘₯ξ€œπ‘†π‘₯π‘Ÿπœ”(𝜎)π‘‘πœŽξ‚Άβ‰€(6𝐢)πœ”ξ‚€π΅π‘₯6π‘Ÿπ‘₯≀(6𝐢)π›Ύβˆ’3πœ”ξ€·π΅π‘₯π‘Ÿπ‘₯≀𝑐0πœ”ξ€·π΅π‘₯𝑑/5ξ€Έ,(14) where 𝐢=sup𝐷|βˆ‡2𝑓|,𝛼=diam𝐺,𝑐0=(6𝐢)π›Ύβˆ’3.
Now by a Banach process [4, page 126] from the ball system {𝐡π‘₯𝑑/5} we choose such a denumerable number of notintersecting balls {𝐡π‘₯πœˆπ‘‘πœˆ/5},𝜈=1,2,…,𝑁 that the ball of five-times greater radius {𝐡π‘₯πœˆπ‘‘πœˆ} cover the whole π‘‚ξ…žπ‘“ set. We again denote these balls by {𝐡π‘₯πœˆπ‘‘πœˆ/5},𝜈=1,2,…,𝑁 and their surface by π‘†ξ…žπœˆ. Then by virtue of (5) βˆžξ“πœˆ=1ξ€œπ‘†ξ…žπœˆπœ”(𝜎)||βˆ‡π‘“||π‘‘πœŽβ‰€πΆ0πœ”(𝐺)<𝐢0πœ‚.(15) Now let π‘₯βˆˆπ‘‚ξ…žξ…žπ‘“. Then ξ€œ6π‘Ÿπ‘₯5π‘Ÿπ‘₯π‘‘π‘Ÿξ€œπ‘†π‘₯π‘Ÿπœ”(𝜎)π‘‘πœŽβ‰€πœ”ξ‚€π΅π‘₯6π‘Ÿπ‘₯.(16) Therefore there exists such 5π‘Ÿπ‘₯≀𝑑≀6π‘Ÿπ‘₯ that π‘Ÿπ‘₯ξ€œπ‘†π‘₯π‘Ÿπœ”(𝜎)π‘‘πœŽβ‰€πœ”ξ‚€π΅π‘₯6π‘Ÿπ‘₯.(17)
Assign arbitrary πœ‚>0. By virtue of that |βˆ‡π‘“|𝑆π‘₯π‘‘β‰€πœ‚β‹…π‘‘, for sufficiently small 𝑑 we have ξ€œπ‘†π‘₯π‘‘πœ”(𝜎)||βˆ‡π‘“||π‘‘πœŽβ‰€πœ‚π‘‘ξ€œπ‘†π‘₯π‘‘πœ”(𝜎)π‘‘πœŽβ‰€(2πœ‚)βŽ›βŽœβŽπ‘Ÿπ‘₯ξ€œπ‘†π‘₯π‘‘πœ”(𝜎)π‘‘πœŽβŽžβŽŸβŽ β‰€(2πœ‚)πœ”ξ‚€π΅π‘₯2π‘Ÿπ‘₯≀(6𝐢)≀(2πœ‚)π›Ύβˆ’1πœ”ξ€·π΅π‘₯𝑑/5ξ€Έβ‰€πœ‚πΆ1πœ”ξ€·π΅π‘₯𝑑/5ξ€Έ.(18) Again by means of Banach process and by virtue of (43) we get π‘ξ“πœˆ=1ξ€œπ‘†π‘›πœˆπœ”(𝜎)||βˆ‡π‘“||π‘‘πœŽβ‰€πœ‚β‹…πΆ1πœ”(𝐷),(19) where π‘†π‘›πœˆ is the surface of balls in the second covering.
Combining the spherical surfaces π‘†ξ…žπœˆ and π‘†ξ…žξ…žπœˆ we get that the open balls system covers the closed set 𝑂𝑓. Then a finite subcovering may be choosing from it. Let them be the balls 𝐡1,𝐡2,…,𝐡π‘₯ and their surfaces are 𝑆1,𝑆2,…,𝑆𝑁. We get from inequalities (4) and (7) π‘ξ“πœˆ=1ξ€œπ‘†πœˆ||βˆ‡π‘“||πœ”(𝜎)π‘‘πœŽβ‰€ξ‚ƒπΆ1πœ”ξ‚€π·ξ‚+𝐢0ξ‚„πœ‚.(20)
Put now πœ€=[𝐢1πœ”(𝐷)+𝐢0]πœ‚.
Following [2], assume πœ€=πœ”(𝐷)ξ€·oscu𝐺𝑅2,(21) and according to Lemma 1 for a given πœ€ we will find the balls 𝐡1,𝐡2,…,𝐡π‘₯ and exclude them from the domain 𝐺. Put π·βˆ—=π·β§΅β‹ƒπ‘πœˆ=1𝐡𝜈 intersect with πΊβˆ— a closed spherical layer 𝑅1+14≀|π‘₯|≀𝑅1+14.(22) We denote the intersection by πΊξ…ž. We can assume that the function 𝑒(π‘₯) is defined in some 𝛿 vicinity πΊξ…žπ›Ώ of set πΊξ…ž. Take 𝛿<𝑅/4 so that oscuπΊξ…žπ›Ώβ‰€2osc𝐺u.(23)
On a closed set πΊξ…ž we have βˆ‡π‘“β‰ 0. Consider on πΊξ…žπ›Ώ the equation system 𝑑π‘₯𝑑𝑑=𝑒π‘₯.(24)
Let some surface 𝑆 touches the direction of the field at each its point, then ξ€œπ‘†|||πœ•π‘’πœ•π‘›|||π‘‘πœŽ=0,(25) since πœ•π‘’/πœ•π‘› is identically equal to zero at 𝑆.
We will use it in constructing the needed surface of Ξ£. Tubular surfaces whose generators will be the trajectories of the system (50) constitute the basis of Ξ£.
They will add nothing to the integral we are interested in. These surfaces will have the form of thin tubes that cover πΊξ…ž. Then we shall put partitions to some of these tubes. Lets construct tubes. Denote by 𝐸 the intersection of πΊξ…ž with sphere |π‘₯|=𝑅(1+3/4).
Let 𝑁 be a set of points 𝐸. Where field direction of system (50) touches the sphere |π‘₯|=𝑅(1+3/4). Cover 𝑁 with such an open on the sphere |π‘₯|=𝑅(1+3/4) set 𝐹 that ξ€œπΉπœ”(π‘₯)|||πœ•π‘’πœ•π‘›|||π‘‘πœŽβ‰€πœ”(𝐺)ξ€·oscu𝐷𝑅2.(26) It will be possible if on 𝑁(πœ•π‘’/πœ•π‘…)≑0.
Put πΈξ…ž=𝐸⧡𝐹. Cover πΈξ…ž on the sphere by a finite number of open domains with piece-wise smooth boundaries. We shall call them cells. We shall control their diameters in estimation of integrals that we need. The surface remarked by the trajectories lying in the ball |π‘₯|≀(7/4)𝑅 and passing through the bounds of cells we shall call tube.
So, we obtained a finite number of tubes. The tube is called open if not interesting, this tube one can join by a broken line the point of its corresponding cell with a spherical layer (5/4)π‘…βˆ’π›Ώ<|π‘₯|<(7/4)𝑅. Choose the diameters of cells so small that the trajectory beams passing through each cell could differ no more than 𝛿/2𝑛.
By choose of cells diameters the tubes will be contained in 54π‘…βˆ’π›Ώ<|π‘₯|<54𝑅.(27)
Let also the cell diameter be chosen so small that the surface that is orthogonal to one trajectory of the tube intersects the other trajectories of the tube at an angle more than πœ‹/4.
Cut off the open tube by the hypersurface in the place where it has been imbedded into the layer 54π‘…βˆ’π›Ώ2<|π‘₯|<54𝑅(28) at first so that the edges of this tube be embedded into this layer.
Denote these cutoff tubes by 𝑇1,𝑇2,…,𝑇𝑆. If each open tube is divided with a partition, then a set-theoretical sum of closed tubes, tubes 𝑇1,𝑇2,…,𝑇𝑆 their partitions spheres 𝑆1,𝑆2,…,𝑆𝑁, and the set 𝐹 on the sphere |π‘₯|=(7/4)𝑅 divides the spheres |π‘₯|=𝑅 and |π‘₯|=2𝑅. Note that βˆ«π‘†πœ”|πœ•π‘’/πœ•π‘›|π‘‘πœŽ along the surface of each tube equals to zero, since πœ•π‘’/πœ•π‘› identically equals to zero.
Now we have to choose partitions so that the integral βˆ«π‘†πœ”|πœ•π‘’/πœ•π‘›|π‘‘πœŽ was of the desired value. Denote by π‘ˆπ‘– the domain bounded by 𝑇𝑖 with corresponding cell and hypersurface cutting off this tube. We have π‘ˆπ‘–βˆ©π‘ˆπ‘—=βˆ… and therefore π‘šξ“π‘–=1πœ”ξ€·π‘ˆπ‘–ξ€Έ<2πœ”(𝐷).(29)
Consider a tube 𝑇𝑖 and corresponding domain π‘ˆπ‘–. Choose any trajectory on this tube. Denote it by 𝐿𝑖. The length πœ‡π‘–πΏπ‘– of the curve 𝐿𝑖 satisfies the inequality πœ‡π‘–πΏπ‘–β‰₯𝑅2.(30)
Let introduce on 𝐿𝑖 a parameter 𝑙 (length of the arc), counted from the cell. By πœŽπ‘–(𝑙) denote the cross-section by π‘ˆπ‘– hypersurface passing thought the point, corresponding to 𝑙 and orthogonal to the trajectory 𝐿𝑖 at this point. Let the diameter of cells be so small ξ€œπΏπ‘–π‘‘π‘™ξ€œπœŽπ‘–(𝑙)πœ”(π‘₯)π‘‘πœŽ<2πœ”ξ€·π‘ˆπ‘–ξ€Έ.(31)
Then by Chebyshev inequality a set 𝐻 points π‘™βˆˆπΏπ‘– where ξ€œπœŽπ‘–(𝑙)πœ”(π‘₯)π‘‘πœŽ>8π‘…πœ”ξ€·π‘ˆπ‘–ξ€Έ(32) satisfies the inequality πœ‡π‘–π»<𝑅/4 and hence by virtue of (55) for 𝐸=𝐿𝑖⧡𝐻 it is valid and πœ‡1𝐸>𝑅/4.(33)
At the points of the curve 𝐿𝑖 the derivative πœ•π‘’/πœ•π‘™ preserves its sign, and therefore ξ€œπΈ|||πœ•π‘’πœ•π‘™|||π‘‘π‘™β‰€ξ€œπΏπ‘–|||πœ•π‘’πœ•π‘™|||𝑑𝑙≀oscuπ·ξ…žπ›Ώ.(34)
Hence, by using (65) and a mean value theorem for one variable function we find that there exists 𝑙0βˆˆπΈβ€–β€–β€–πœ•π‘’πœ•π‘™β€–β€–β€–π‘™=𝑙0≀4𝑅oscuπ·ξ…žπ›Ώ.(35)
But on the other hand β€–β€–β€–πœ•π‘’πœ•π‘™β€–β€–β€–π‘™=𝑙0=||βˆ‡π‘’||𝑙=𝑙0.(36)
Together with (67) it gives ||βˆ‡π‘’||𝑙=𝑙0ξ€œπœŽπ‘–ξ€·π‘™0ξ€Έπœ”(π‘₯)π‘‘πœŽβ‰€8𝑅4π‘…πœ”ξ€·π‘ˆπ‘–ξ€Έξ€·oscu𝐷.(37)
Now, let the diameter of cells be still so small that ξ€œπœŽπ‘–ξ€·π‘™0ξ€Έπœ”(π‘₯)||βˆ‡π‘’||π‘‘πœŽβ‰€16β‹…4π‘…πœ”ξ€·π‘ˆπ‘–ξ€Έξ€·oscu𝐷,(38) (we can do it, since the derivatives πœ•π‘’/πœ•π‘₯𝑖are uniformly continuous). Therefore according to (53) 𝑆𝑖=1ξ€œπœŽπ‘–ξ€·π‘™0ξ€Έπœ”(π‘₯)||βˆ‡π‘’||π‘‘πœŽβ‰€16β‹…4π‘…πœ”ξ€·π‘ˆπ‘–ξ€Έξ€·oscu𝐷.(39)
Define by Ξ£ a set-theoretical sum of all closed tubes, all open tubes 𝑇𝑖, all πœŽπ‘–(𝑙0), all spheres 𝑆𝑖 and sets 𝐹 on the sphere |π‘₯|=(7/4)𝑅. Then, we get by (4), (49), (51), and (73) ξ€œΞ£πœ”(π‘₯)|||πœ•π‘’πœ•π‘›|||π‘‘πœŽβ‰€πΎπœ”(𝐷)ξ€·oscu𝐷𝑅𝑝.(40)
Then, we get by (4), (49), (51), (73) ξ€œΞ£πœ”(π‘₯)|||πœ•π‘’πœ•π‘›|||π‘‘πœŽβ‰€πΎπœ”(𝐷)ξ€·oscu𝐷𝑅𝑝.(41)
The lemma is proved.

Denote by π‘Š12,πœ”(𝐷) the Banach space of the functions 𝑒(π‘₯) defined in 𝐷 with the finite normβ€–π‘’β€–π‘Š12,πœ”(𝐷)=βŽ›βŽœβŽξ€œπ·πœ”βŽ›βŽœβŽπ‘’2+𝑛𝑖=1𝑒2π‘–βŽžβŽŸβŽ π‘‘π‘₯⎞⎟⎠1/2,(42) and let π‘œπ‘Š12,πœ”(𝐷) be a completion of 𝐢∞0(𝐷) by the norm of the space π‘Š12,πœ”(𝐷).

By π‘šπ‘ π»(𝐴) we will denote the Hausdorff measure of the set 𝐴 of order 𝑠>0. Further, everywhere the notation 𝐢(β‹―) means that the positive constant 𝐢 depends only on the content of brackets.

Theorem 2. Let D be a bounded domain in 𝐸𝑛 and let πΈβŠ‚π· be a compact. If with respect to the coefficients of the operator β„’ the conditions (3)–(5) are fulfilled, then for removability of the compact E with respect to the (1) in the space πΆπœ†πœ”(𝐷) it sufficies that π‘šπ‘›βˆ’2+πœ†π»(𝐸)=0.(43)

Proof. At first we show that without loss of generality we can suppose the condition πœ•π·βˆˆπΆ1 is fulfilled. Suppose that the condition (43) provides the removability of the compact 𝐸 for the domains, whose boundary is the surface of the class 𝐢1, but πœ•π·βˆˆπΆ1, and by fulfilling (43) the compact 𝐸 is not removable. Then the problem (7) has a nontrivial solution 𝑒(π‘₯), moreover 𝑒|𝐸=𝑓(π‘₯) and 𝑓(π‘₯)β‰ 0. We always can suppose the lowest coefficients of the operator β„’ is infinitely differentiable in 𝐷. Moreover, without loss of generality, we'll suppose that the coefficients of the operator β„’ are extended to a ball π΅βŠƒπ· with saving the conditions (3)–(5). Let 𝑓+(π‘₯)=max{𝑓(π‘₯),0},π‘“βˆ’(π‘₯)=min{𝑓(π‘₯),0}, and 𝑒±(π‘₯) be generalized by Wiener (see [15]) solutions of the boundary value problems ℒ𝑒±=0,π‘₯∈𝐷⧡𝐸,uΒ±βˆ£πœ•π·β§΅πΈ=0,u±∣𝐸=𝑓±.(44)
Evidently, 𝑒(π‘₯)=𝑒+(π‘₯)+π‘’βˆ’(π‘₯). Further, let π·ξ…ž be such a domain that πœ•π·ξ…žβˆˆπΆ1,π·βŠ‚π·ξ…ž,π·ξ…žβŠ‚π΅,and πœ—Β±(π‘₯) be solutions of the problems β„’πœ—Β±=0,π‘₯βˆˆπ·ξ…žβ§΅πΈ,πœ—Β±βˆ£πœ•π·ξ…ž=0,πœ—Β±βˆ£πΈ=𝑓±,πœ—Β±(π‘₯)∈Cπœ†πœ”ξ€·π·ξ…žξ€Έ.(45) By the maximum principle for π‘₯∈𝐷, 0≀𝑒+(π‘₯)β‰€πœ—+(π‘₯),πœ—βˆ’(π‘₯)β‰€π‘’βˆ’(π‘₯)≀0.(46) But according to our supposition, πœ—+(π‘₯)β‰‘πœ—βˆ’(π‘₯)≑0. Hence, it follows that 𝑒(π‘₯)≑0. So, we'll suppose that πœ•π·βˆˆπΆ1. Now, let 𝑒(π‘₯) be a solution of the problem (7), and the condition (43) be fulfilled. Give an arbitrary πœ€>0. Then there exists a sufficiently small positive number 𝛿 and a system of the balls {π΅π‘Ÿπ‘˜(π‘₯π‘˜)},π‘˜=1,2,…, such that π‘Ÿπ‘˜<𝛿,πΈβŠ‚β‹ƒβˆžπ‘˜=1π΅π‘Ÿπ‘˜(π‘₯π‘˜) and βˆžξ“π‘˜=1π‘Ÿπ‘›βˆ’2+πœ†π‘˜<πœ€.(47)
Consider a system of the spheres {𝐡2π‘Ÿπ‘˜(π‘₯π‘˜)}, and let π·π‘˜=𝐷∩𝐡2π‘Ÿπ‘˜(π‘₯π‘˜),π‘˜=1,2,…. Without loss of generality we can suppose that the cover {𝐡2π‘Ÿπ‘˜(π‘₯π‘˜)} has a finite multiplicity π‘Ž0(𝑛). By the Landis-Gerver theorem, for every π‘˜, there exists a piece-wise smooth surface Ξ£π‘˜ dividing in π·π‘˜ the spheres π‘†π‘Ÿπ‘˜(π‘₯π‘˜) and 𝑆2π‘Ÿπ‘˜(π‘₯π‘˜), such that ξ€œΞ£π‘˜πœ”|||πœ•π‘’πœ•πœˆ|||𝑑𝑠≀𝐾oscuπ·π‘˜πœ”ξ€·π·π‘˜ξ€Έπ‘Ÿ2π‘˜.(48) Since 𝑒(π‘₯)βˆˆπΆπœ†πœ”(𝐷), there exists a constant 𝐻1>0 depending only on the function 𝑒(π‘₯) such that oscuπ·π‘˜πœ”β‰€π»1ξ€·2π‘Ÿπ‘˜ξ€Έπœ†.(49) Besides, πœ”ξ€·π·π‘˜ξ€Έβ‰€mesn𝐡2π‘Ÿπ‘˜ξ€·π‘₯π‘˜ξ€Έ=Ω𝑛2π‘›π‘Ÿπ‘›π‘˜;π‘˜=1,2,…,(50) where Ω𝑛=mes𝑛𝐡1(0). Using (49) and (50) in (48), we get ξ€œΞ£π‘˜πœ”|||πœ•π‘’πœ•πœˆ|||𝑑𝑠≀𝐢1π‘Ÿnβˆ’2+πœ†π‘˜;π‘˜=1,2,…,(51) where 𝐢1=𝐾𝐻12𝑛+πœ†.
Let 𝐷Σ be an open set situated in 𝐷⧡𝐸 whose boundary consists of unification of Ξ£ and Ξ“, where Ξ£=β‹ƒβˆžπ‘˜=1Ξ£π‘˜,Ξ“=πœ•π·β§΅β‹ƒβˆžπ‘˜=1𝐷+π‘˜,𝐷+π‘˜ is a part of π·π‘˜ remaining after the removing of points situated between Ξ£ and 𝑆2π‘Ÿπ‘˜(π‘₯π‘˜);π‘˜=1,2,…. Denote by π·ξ…žΞ£ the arbitrary connected component 𝐷Σ, and by β„³ we denote the elliptic operator of divergent structure β„³=𝑛𝑖,𝑗=1πœ•πœ•π‘₯π‘–ξ‚΅π‘Žπ‘–π‘—(π‘₯)πœ•πœ•π‘₯𝑗.(52)
According to Green formula for any functions 𝑧(π‘₯) and π‘Š(π‘₯) belonging to the intersection 𝐢2(π·ξ…žΞ£)∩𝐢1(π·ξ…žΞ£), we have ξ€œπ·ξ…žΞ£(π‘§β„³π›½βˆ’π›½β„³π‘§)𝑑π‘₯=ξ€œπœ•π·ξ…žΞ£ξ‚΅π‘§πœ•π›½πœ•πœˆβˆ’π›½πœ•π‘§πœ•πœˆξ‚Άπ‘‘π‘ .(53)
Since πœ•π·βˆˆπΆ1, then 𝑒(π‘₯)∈𝐢1(π·ξ…žΞ£)∩𝐢1(π·ξ…žΞ£)(π‘₯)∈𝐢1(Dξ…žΞ£) (see [16]). From (53) choosing the functions 𝑧=1,𝛽=πœ”π‘’2, we have ξ€œπ·ξ…žΞ£β„³ξ€·πœ”π‘’2𝑑π‘₯=2ξ€œπœ•π·ξ…žΞ£πœ”π‘’πœ•π‘’πœ•πœˆπ‘‘π‘ +ξ€œπœ•π·Ξ£πœ”π‘₯𝑖𝑒2𝑑𝑠.(54)
But |𝑒(π‘₯)|≀𝑀<∞ for π‘₯∈𝐷. Let us put the condition πœ”π‘₯𝑖<π‘πœ”.(βˆ—)
By virtue of condition (52) and βˆ«πœ•π·Ξ£πœ”π‘’2𝑑𝑠<𝐢3π‘€πœ€,subject to (51) and (47), we conclude ξ€œπ·ξ…žΞ£β„³ξ€·πœ”π‘’2𝑑π‘₯≀2π‘€π‘Ž0βˆžξ“π‘˜=1ξ€œΞ£π‘˜πœ”|||πœ•π‘’πœ•πœˆ|||𝑑𝑠+ξ€œπ·ξ…žΞ£πœ”π‘’2𝑑π‘₯≀2π‘€π‘Ž0𝐢1βˆžξ“π‘˜=1π‘Ÿπ‘›βˆ’2+π›Όπ‘˜+πœ€π‘€π‘2<𝐢3πœ€,(55) where 𝐢3=2π‘€π‘Ž0𝐢1.
On the other hand β„³ξ€·πœ”π‘’2ξ€Έ=6π‘’πœ”β„³(𝑒)+2𝑛𝑖,𝑗=1πœ”π‘Žπ‘–π‘—π‘’π‘–π‘’π‘—+(2𝑒+1)𝑛𝑖,𝑗=1π‘Žπ‘–π‘—π‘’π‘₯π‘—πœ”π‘₯𝑖+π‘›βˆ‘π‘–,𝑗=1πœ•π‘Žπ‘–π‘—πœ•π‘₯π‘–π‘’πœ”π‘₯𝑗+π‘›βˆ‘π‘–,𝑗=1π‘Žπ‘–π‘—π‘’πœ”π‘₯𝑖π‘₯𝑗(56) and besides, ℳ𝑒=ℒ𝑒+𝑛𝑖=1𝑑𝑖(π‘₯)π‘’π‘–βˆ’π‘(π‘₯)𝑒,(57) where 𝑑𝑖(π‘₯)=𝑛𝑗=1πœ•π‘Žπ‘–π‘—(π‘₯)πœ•π‘₯π‘—βˆ’π‘π‘–(π‘₯),𝑖=1,…,𝑛.(58) It is evident that by virtue of conditions (4) and (5) |𝑑𝑖(π‘₯)|≀𝑑0<∞;𝑖=1,…,𝑛. Thus, from (55) we obtain 6ξ€œπ·ξ…žΞ£π‘’πœ”π‘›ξ“π‘–=1𝑑𝑖(π‘₯)𝑒𝑖𝑑π‘₯βˆ’6ξ€œπ·ξ…žΞ£π‘’2𝑐(π‘₯)𝑑π‘₯+2ξ€œπ·ξ…žΞ£π‘›ξ“π‘–,𝑗=1πœ”(π‘₯)π‘Žπ‘–π‘—π‘’π‘–π‘’π‘—π‘‘π‘₯+(2𝑒+1)ξ€œπ·ξ…žΞ£π‘›ξ“π‘–,𝑗=1π‘Žπ‘–π‘—π‘’π‘—πœ”π‘₯𝑖𝑑π‘₯+ξ€œπ·ξ…žΞ£π‘›ξ“π‘–,𝑗=1πœ•π‘Žπ‘–π‘—πœ•π‘₯π‘—π‘’πœ”π‘₯𝑖𝑑π‘₯+||βˆ‡π‘’||2𝑑π‘₯+ξ€œπ·ξ…žΞ£π‘›ξ“π‘–,𝑗=1π‘Žπ‘–π‘—π‘’πœ”π‘₯𝑖π‘₯𝑗𝑑π‘₯<𝐢3πœ€.(59)
Hence, for any 𝛼>0 it follows that 2π›Ύξ€œπ·ξ…žΞ£πœ”||βˆ‡π‘’||2𝑑π‘₯<6𝑑0ξ€œπ·ξ…žΞ£πœ”|𝑒|||𝑒𝑖||𝑑π‘₯+6ξ€œπ·ξ…žΞ£π‘’2πœ”(π‘₯)+(2𝑒+1)ξ€œπ·ξ…žΞ£π‘Žπ‘–π‘—π‘’π‘—πœ”π‘₯𝑖𝑑π‘₯+𝑑0ξ€œπ·ξ…žΞ£π‘’πœ”2π‘₯𝑖𝑑π‘₯+ξ€œπ·ξ…žΞ£π‘Žπ‘–π‘—π‘’πœ”π‘₯𝑖π‘₯𝑗+𝐢3πœ€β‰€6𝑑0πœ€ξ€œπ·ξ…žΞ£|𝑒|2𝑑π‘₯+6𝑑0πœ€2ξ€œπ·ξ…žΞ£πœ”2||βˆ‡π‘’||2𝑑π‘₯+(2𝑛+1)ξ€œπ·ξ…žΞ£π‘’π‘—πœ”π‘‘π‘₯+𝑑0ξ€œπ·ξ…žΞ£π‘’πœ”π‘‘π‘₯+𝛾𝐢4πœ€β‰€6𝑑0πœ€π‘€mes𝑛𝐷+(2𝑀+1)π›Ύπœ€mes𝑛𝐷+𝑑0π‘€πœ”(𝐷)+𝛾𝐢4π‘€πœ”(𝐷)+𝐢3πœ€.(60)
If we take into account that |||πœ”π‘₯𝑖π‘₯𝑗|||<𝐢4πœ”(π‘₯),(61) then from here we have that ξ€œπ·ξ…žΞ£πœ”2||βˆ‡π‘’||2𝑑π‘₯≀𝐢5,(62) where 𝐢5=(6𝑑0+(2𝑀+1))𝑀mes𝑛𝐷+(𝑑0𝑀+𝛾𝐢4𝑀)πœ”(𝐷)+𝐢3/𝛾. Without loss of generality we assume that πœ€β‰€1. Hence we haveβˆ«π·πœ”2|βˆ‡π‘’|2𝑑π‘₯≀𝐢6.
Thus 𝑒(π‘₯)βˆˆπ‘Š12,πœ”(𝐷). From the boundary condition and mesπ‘›βˆ’1(πœ•π·βˆ©πΈ)=0 we get 𝑒(π‘₯)βˆˆπ‘Š12,πœ”(𝐷). Now, let 𝜎β‰₯2 be a number which will be chosen later, 𝐷+Ξ£={π‘₯∢π‘₯βˆˆπ·ξ…žΞ£,𝑒(π‘₯)>0}. Without loss of generality, we suppose that the set 𝐷+Ξ£ is not empty. Supposing in (53) 𝑧=1,𝛽=πœ”π‘’πœŽ, we get ξ€œπ·+Ξ£β„³(πœ”π‘’πœŽ)𝑑π‘₯=πœŽξ€œπœ•π·+Ξ£ξ‚€πœ”πœˆπ‘’πœŽ+πœŽπ‘’πœŽβˆ’1πœ•π‘’πœ•πœˆξ‚π‘‘π‘ β‰€π‘€πœŽξ€œπœ•π·+Ξ£πœ”π‘‘π‘ +πœŽπ‘€πœŽβˆ’1ξ€œπœ•π·+Ξ£|||πœ•π‘’πœ•πœˆ|||𝑑𝑠≀𝐢5ξ€·π‘Ž0,𝑀,𝜎,𝐢1ξ€Έπœ€.(63)
But, on the other hand, β„³(π‘’πœŽ)=𝑛𝑖,𝑗=1πœ•πœ•π‘₯π‘–ξ‚΅π‘Žπ‘–π‘—πœ•πœ”π‘’πœŽπœ•π‘₯𝑗=𝑛𝑖,𝑗=1πœ•πœ•π‘₯π‘–βŽ›βŽœβŽπ‘Žπ‘–π‘—πœ”ξ‚΅πœŽπ‘’πœŽβˆ’1πœ•π‘’πœ•π‘₯𝑗+𝑛𝑖,𝑗=1πœ•πœ•π‘₯π‘–ξ‚΅π‘Žπ‘–π‘—πœ”π‘₯π‘–πœ•π‘’πœŽπœ•π‘₯π‘—ξ‚ΆβŽžβŽŸβŽ =𝑛𝑖,𝑗=1πœ•πœ•π‘₯π‘–ξ‚΅π‘Žπ‘–π‘—πœ”πœŽπ‘’πœŽβˆ’1πœ•π‘’πœ•π‘₯𝑗+𝑛𝑖,𝑗=1πœ•πœ•π‘₯π‘–ξ‚΅π‘Žπ‘–π‘—πœŽπ‘’πœŽβˆ’1πœ”π‘₯πœ•π‘’πœ•π‘₯𝑗=πœŽπœ”π‘’πœŽβˆ’1β„³(𝑒)+πœŽπœ”πœ•πœ•π‘₯π‘–ξ‚΅π‘Žπ‘–π‘—π‘’πœŽβˆ’1πœ•π‘’πœ•π‘₯𝑗+πœŽπ‘’πœŽβˆ’1πœ•πœ•π‘₯π‘–ξ‚΅π‘Žπ‘–π‘—πœ”πœ•π‘’πœ•π‘₯𝑗+𝛽=πœŽπœ”π‘’πœŽβˆ’1β„³(𝑒)+πœŽπœ”π‘’πœŽβˆ’1πœ•πœ•π‘₯π‘–ξ‚΅π‘Žπ‘–π‘—πœ•π‘’πœ•π‘₯𝑗+πœŽπœ”π‘Žπ‘–π‘—π‘’π‘₯𝑗(πœŽβˆ’1)π‘’πœŽβˆ’2𝑒π‘₯𝑖+πœŽπ‘’πœŽβˆ’1πœ”π‘₯π‘–ξ‚΅π‘Žπ‘–π‘—πœ•π‘’πœ•π‘₯𝑗+πœŽπ‘’πœŽβˆ’1πœ”πœ•πœ•π‘₯π‘–ξ‚΅π‘Žπ‘–π‘—πœ•π‘’πœ•π‘₯𝑗+𝛽=3πœŽπœ”π‘’πœŽβˆ’1𝑀(𝑒)+𝜎(πœŽβˆ’1)π‘Žπ‘–π‘—π‘’π‘₯𝑖𝑒π‘₯π‘—π‘’πœŽβˆ’2πœ”+πœŽπ‘’πœŽβˆ’1πœ”π‘₯π‘–π‘Žπ‘–π‘—π‘’π‘₯𝑗+𝛽=πœŽξ€œπ·+Σ𝑑𝑖(π‘₯)𝑒π‘₯π‘–π‘’πœ”π‘‘π‘₯βˆ’πœŽ(πœŽβˆ’1)ξ€œπ·+Ξ£π‘’πœŽπœ”(π‘₯)𝑐(π‘₯)𝑑π‘₯+𝜎(πœŽβˆ’1)ξ€œπ·+Σ𝑛𝑖,𝑗=1π‘’πœŽβˆ’2πœ”(π‘₯)π‘Žπ‘–π‘—π‘’π‘–π‘’π‘—π‘‘π‘₯+(2𝑒+1)ξ€œπ·+Σ𝑛𝑖,𝑗=1π‘Žπ‘–π‘—π‘’π‘—πœ”π‘₯π‘—π‘’πœŽβˆ’1.(64)
Hence, we conclude 𝜎(πœŽβˆ’1)ξ€œπ·+Ξ£πœ”2π‘’πœŽβˆ’2||βˆ‡π‘’||2𝑑π‘₯≀𝑑0ξ€œπ·+Ξ£π‘’πœŽβˆ’1πœ”π‘’π‘–π‘‘π‘₯≀𝑑0ξ€œπ·+Ξ£π‘’πœŽβˆ’1πœ”π‘’π‘–π‘‘π‘₯≀𝑑0πœ€2ξ€œπ·+Ξ£π‘’πœŽπ‘‘π‘₯.(65)
Let 𝐷+={π‘₯∢π‘₯∈𝐷,𝑒(π‘₯)>0},𝐷+1 an arbitrary connected component of 𝐷+. Subject to the arbitrariness of πœ€ from (65) we get (πœŽβˆ’1)π›Ύξ€œπ·+1πœ”π‘’πœŽβˆ’2||βˆ‡π‘’||2𝑑π‘₯≀𝑑0ξ€œπ·+1πœ”π‘’πœŽβˆ’1𝑛𝑖=1||𝑒𝑖||𝑑π‘₯.(66)
Thus, for anyπœ‡>0(πœŽβˆ’1)π›Ύξ€œπ·+1πœ”π‘’πœŽβˆ’2||βˆ‡π‘’||2𝑑π‘₯≀𝑑0πœ‡2ξ€œπ·+1πœ”π‘’πœŽβˆ’2βŽ›βŽœβŽπ‘›ξ“π‘–=1||𝑒𝑖||⎞⎟⎠2𝑑π‘₯+𝑑02πœ‡ξ€œπ·+1πœ”π‘’πœŽπ‘‘π‘₯≀𝑑0πœ‡π‘›2ξ€œπ·+1πœ”π‘’πœŽβˆ’2||βˆ‡π‘’||2𝑑π‘₯+𝑑02πœ‡ξ€œπ·+1πœ”π‘’πœŽπ‘‘π‘₯.(67).
But, on the other hand, 𝐼=βˆ’πœŽπ‘›ξ“π‘–=1ξ€œπ·+1π‘₯π‘–πœ”π‘’πœŽβˆ’1𝑒𝑖𝑑π‘₯=βˆ’π‘›ξ“π‘–=1ξ€œπ·+1π‘₯π‘–πœ”(π‘’πœŽ)𝑖𝑑π‘₯=π‘›ξ€œπ·+1πœ”π‘’πœŽπ‘‘π‘₯.(68) and besides, for any𝛽>0𝐼=πœŽπ›½2ξ€œπ·+1π‘Ÿ2πœ”π‘’πœŽπ‘‘π‘₯+𝜎2π›½ξ€œπ·+1π‘’πœŽβˆ’2πœ”2||βˆ‡π‘’||2𝑑π‘₯.(69)
Then πΌβ‰€πœŽπ›½2ξ€œπ·+1π‘Ÿ2πœ”π‘’πœŽπ‘‘π‘₯+𝜎2π›½ξ€œπ·+1πœ”2||βˆ‡π‘’||2π‘’πœŽβˆ’2𝑑π‘₯,(70) where π‘Ÿ=|π‘₯|. Denote by π‘˜(𝐷) the quantity supπ‘₯∈𝐷|π‘₯|. Without loss of generality we’ll suppose that π‘˜(𝐷)=1. Then πΌβ‰€πœŽ2π›½ξ€œπ·+1πœ”π‘’πœŽπ‘‘π‘₯+𝜎2π›½ξ€œπ·+1πœ”2π‘’πœŽβˆ’2||βˆ‡π‘’||2𝑑π‘₯.(71)
Thus, ξ‚΅π‘›βˆ’πœŽπ›½2ξ‚Άξ€œπ·+1πœ”π‘’πœŽπ‘‘π‘₯+𝜎2π›½ξ€œπ·+1πœ”2π‘’πœŽβˆ’2||βˆ‡π‘’||2𝑑π‘₯.(72)
Now, choosing 𝛽=𝑛/𝜎, we finally obtain ξ€œπ·+1πœ”π‘’πœŽπ‘‘π‘₯β‰€πœŽ2𝑛2ξ€œπ·+1πœ”2π‘’πœŽβˆ’2||βˆ‡π‘’||2𝑑π‘₯.(73)
Subject to (73) in (67), we conclude (πœŽβˆ’1)π›Ύξ€œπ·+1πœ”2π‘’πœŽβˆ’2||βˆ‡π‘’||2𝑑π‘₯≀𝑑0πœ€π‘›2+𝑑0𝜎22πœ€π‘›2ξ‚Άξ€œπ·+1πœ”2π‘’πœŽβˆ’2||βˆ‡π‘’||2𝑑π‘₯.(74)
Now choose πœ‡ such that (πœŽβˆ’1)𝛾>𝑑0πœ‡π‘›2+𝑑0𝜎22πœ‡π‘›2.(75)
Then from (73)–(75) it will follow that 𝑒(π‘₯)≑0 in 𝐷+1, and thus 𝑒(π‘₯)≑0 in 𝐷. Suppose that πœ‡=(πœŽβˆ’1)𝛾/𝑑0𝑛. Then (75) is equivalent to the condition 𝑛>ξ‚€πœŽπœŽβˆ’12𝑑0𝛾2.(76)
At first, suppose that 𝑛>𝑑0𝛾2.(77)
Let’s choose and fix such a big 𝜎β‰₯2 that by fulfilling (77) the inequality (76) is true. Thus, the theorem is proved, if with respect to 𝑛 the condition (77) is fulfilled. Show that it is true for any 𝑛β‰₯3. For that, at first, note that if π‘˜(𝐷)β‰ 1, then condition (77) will take the form 𝑛>𝑑0π‘˜(𝐷)𝛾2.(78)
Now, let the condition (77) be not fulfilled. Denote by π‘˜ the least natural number for which 𝑛+π‘˜>𝑑0𝛾2.(79)
Consider (𝑛+π‘˜)-dimensional semicylinder π·ξ…ž=𝐷×(βˆ’π›Ώ0,𝛿0)Γ—β‹―Γ—(βˆ’π›Ώ0,𝛿0), where the number 𝛿0>0 will be chosen later. Since πœ”(𝐷)=1, then πœ”(π·ξ…ž)≀1+𝛿0βˆšπ‘˜. Let’s choose and fix 𝛿0 so small that along with the condition (79), the condition 𝑛+π‘˜>βŽ›βŽœβŽπ‘‘0πœ”ξ€·π·ξ…žξ€Έπ›ΎβŽžβŽŸβŽ 2(80) was fulfilled too.
Let 𝑦=ξ€·π‘₯1,…,π‘₯𝑛,π‘₯𝑛+1,…,π‘₯𝑛+π‘˜ξ€Έ,πΈξ…ž=πΈΓ—ξ€Ίβˆ’π›Ώ0,𝛿0ξ€»Γ—β‹―Γ—ξ€Ίβˆ’π›Ώ0,𝛿0ξ€»ξ„Ώξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…ƒξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…Œπ‘˜times.(81)
Consider on the domain π·ξ…ž the equation β„’ξ…žπœ—=𝑛𝑖,𝑗=1π‘Žπ‘–π‘—(π‘₯)πœ—π‘–π‘—+π‘˜ξ“π‘–=1πœ•2πœ—πœ•π‘₯2𝑛+𝑖+𝑛𝑖=1𝑏𝑖(π‘₯)πœ—π‘–+𝑐(π‘₯)πœ—=0.(82)
It is easy to see that the function πœ—(𝑦)=𝑒(π‘₯) is a solution of (82) in π·ξ…žβ§΅πΈξ…ž. Besides, π‘šπ‘›+π‘˜βˆ’2+πœ†π»(πΈξ…ž)=(2𝛿0)π‘˜π‘šπ‘›βˆ’2+πœ†π»(𝐸)=0, the function πœ—(𝑦) vanishes on (πœ•π·Γ—[βˆ’π›Ώ0,𝛿0]Γ—β‹…β‹…Γ—[βˆ’π›Ώ0,𝛿0]ξ„Ώξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…ƒξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…Œπ‘˜times)β§΅πΈξ…ž and πœ•πœ—/πœ•πœˆξ…ž=0 at π‘₯𝑛+𝑖=±𝛿0,𝑖=1,…,π‘˜, where πœ•/πœ•πœˆξ…ž is a derivative by the conormal generated by the operator β„’ξ…ž. Noting that 𝛾(β„’ξ…ž)=𝛾(β„’),𝑑0(β„’ξ…ž)=𝑑0(β„’) and subject to the condition (80), from the proved above we conclude that πœ—(𝑦)≑0, that is, π·ξ…ž. The theorem is proved.

Remark 3. As is seen from the proof, the assertion of the theorem remains valid if instead of the condition (4) it is required that the coefficients π‘Žπ‘–π‘—(π‘₯)(𝑖,𝑗=1,…,𝑛) have to satisfy in domain 𝐷 the uniform Lipschitz condition with weight.