Table of Contents
ISRN Organic Chemistry
Volume 2011, Article ID 594242, 5 pages
Research Article

Conformational Analysis in 18-Membered Macrolactones Based on Molecular Modeling

Department of chemistry, Faculty of sciences, University of Biskra, BP 145, 07000 Biskra, Algeria

Received 30 January 2011; Accepted 9 March 2011

Academic Editor: H. Wakamatsu

Copyright © 2011 Salah Belaidi and Dalal Harkati. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Warabi, D. E. Williams, B. O. Patrick, M. Roberge, and R. J. Andersen, “Spirastrellolide B reveals the absolute configuration of the spirastrellolide macrolide core,” Journal of the American Chemical Society, vol. 129, no. 3, pp. 508–509, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. T. Hosoe, K. Fukushima, K. Takizawa et al., “A new antifungal macrolide, eushearilide, isolated from Eupenicillium shearii,” Journal of Antibiotics, vol. 59, no. 9, pp. 597–600, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. B. C. Raimundo and C. H. Heathcock, “Synthesis of a model for C7-C13 of lankamycin,” Organic Letters, vol. 2, no. 1, pp. 27–28, 2000. View at Google Scholar · View at Scopus
  4. A. Nakagawa and S. Omura, “Structure and stereochemistry of macrolides,” in Macrolide Antibiotics, Chemistry, Biology and Practice, pp. 37–84, Academic Press, New York, NY, USA, 1984. View at Google Scholar
  5. W. C. Still and I. Galynker, “Chemical consequences of conformation in macrocyclic compounds : an effective approach to remote asymmetric induction,” Tetrahedron, vol. 37, no. 23, pp. 3981–3996, 1981. View at Google Scholar · View at Scopus
  6. D. M. Grée, C. J. M. Kermarrec, J. T. Martelli, R. L. Grée, J. P. Lellouche, and L. J. Toupet, “The first enantiocontrolled synthesis of E,E conjugated dienes with a fluorine atom in the allylic position,” Journal of Organic Chemistry, vol. 61, no. 6, pp. 1918–1919, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. O. Becker, A. D. MacKerell, J. B. Roux, and M. Watanabe, Eds., Computational Biochemistry and Biophysics, Marcel Dekker Inc., New York, NY, 2001.
  8. N. L. Allinger, “Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V and V torsional terms,” Journal of the American Chemical Society, vol. 99, no. 25, pp. 8127–8134, 1977. View at Google Scholar · View at Scopus
  9. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953. View at Google Scholar · View at Scopus
  10. C.S. Chem 3D Pro, “Molecular Modeling and Analysis,” Cambridge Soft Corporation, 875 Massachusetts, 02139 U.S.A, 2005.
  11. HyperChem (Molecular Modeling System) Hypercube, Inc., 1115 NW 4th Street, Gainesville, FL32601; USA, 2005.
  12. J. Koča, “Potential energy hypersurface and molecular flexibility,” Journal of Molecular Structure, vol. 291, no. 2-3, pp. 255–269, 1993. View at Google Scholar · View at Scopus
  13. S. Belaidi, A. Dibi, and M. Omari, “A conformational exploration of dissymmetric macrolides antibiotics,” Turkish Journal of Chemistry, vol. 26, no. 4, pp. 491–500, 2002. View at Google Scholar · View at Scopus
  14. S. Belaidi, M. Laabassi, R. Grée, and A. Botrel, “Analyse multiconformationnelle des macrolides symétriques de 12 à 28 chaînons basée sur la mécanique moléculaire,” Scientific Study & Research, vol. 4, pp. 27–38, 2003. View at Google Scholar
  15. S. Belaidi, T. Lanez, M. Omari, and A. Botrel, “Quantitative conformational analysis of dissymmetric macrolides by molecular modelling,” Asian Journal of Chemistry, vol. 17, no. 2, pp. 859–870, 2005. View at Google Scholar · View at Scopus
  16. M. Saunders, K. N. Houk, Y. D. Wu et al., “Conformations of cycloheptadecane. A comparison of methods for conformational searching,” Journal of the American Chemical Society, vol. 112, no. 4, pp. 1419–1427, 1990. View at Google Scholar · View at Scopus
  17. S. Belaidi, M. Omari, T. Lanez, and A. Dibi, “Contribution à l’étude de la relation structure-activité dans des nouveaux macrolides antibiotiques,” Journal de La Société Algérienne de Chimie, vol. 14, pp. 27–39, 2004. View at Google Scholar
  18. S. Belaidi, M. Laabassi, R. Gree, and A. Botrel, “New approach to the stereoselectivity of macrolide antibiotics with 20 atoms chains through molecular modelizationNouvelle approche de la stérÉosélectivité dans les macrolides antibiotiques à 20 chaînons par modélisation moléculaire,” Revue Roumaine de Chimie, vol. 50, no. 9-10, pp. 759–765, 2005. View at Google Scholar · View at Scopus
  19. S. Belaidi, M. Omari, and T. Lanez, “Stereochemical analysis in 22-membered macrolides based on molecular modeling,” Annales de la Faculté des Sciences et Sciences de l’Ingénieur, vol. 1, pp. 1–4, 2006. View at Google Scholar
  20. O. Abdelmalek, S. Belaidi, M. Mellaoui, and R. Mazri, “Geometric and electronic structure of isoxazole and isothiazole derivatives by PM3 and density functional theory,” Asian Journal of Chemistry, vol. 23, no. 3, pp. 1183–1185, 2011. View at Google Scholar
  21. T. Yamazaki, M. Ando, T. Kitazume, T. Kubota, and M. Omura, “Conformational fixation of enolates by intramolecular metalfluorine interaction,” Organic Letters, vol. 1, no. 6, pp. 905–908, 1999. View at Google Scholar · View at Scopus
  22. L. R. Cox and S. V. Ley, “Tricarbonyliron complexes: an approach to acyclic stereocontrol,” Chemical Society Reviews, vol. 27, no. 5, pp. 301–314, 1998. View at Google Scholar