Table of Contents
ISRN Gastroenterology
Volume 2011, Article ID 604071, 6 pages
http://dx.doi.org/10.5402/2011/604071
Research Article

Quercetin Treatment Ameliorates Systemic Oxidative Stress in Cirrhotic Rats

1Laboratory of Experimental Hepatology and Physiology, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, 90050170 Porto Alegre, RS, Brazil
2Programa de Pós-Graduação em Genética e Toxicologia Aplicada, Universidade Luterana do Brasil, 92120-015 Canoas, RS, Brazil
3Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brazil
4Laboratório de Estresse Oxidativo e Antioxidantes (ULBRA), Avenida Farroupilha 8001, Bairro São José, 92425-900 Canoas, RS, Brazil

Received 18 April 2011; Accepted 16 June 2011

Academic Editor: F. Izzo

Copyright © 2011 Emanuelle Kerber Vieira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Sanchez-Campos, R. Lopez-Acebo, P. Gonzalez, J. M. Culebras, M. J. Tunon, and J. Gonzalez-Gallego, “Cholestasis and alterations of glutathione metabolism induced by tacrolimus (FK506) in the rat,” Transplantation, vol. 66, no. 1, pp. 84–88, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Rojkind and P. Ponce-Noyola, “The extracellular matrix of the liver,” Collagen and Related Research, vol. 2, no. 2, pp. 151–175, 1982. View at Google Scholar · View at Scopus
  3. A. Pastor, P. S. Collado, M. Almar, and J. González-Gallego, “Antioxidant enzyme status in biliary obstructed rats: effects of N-acetylcysteine,” Journal of Hepatology, vol. 27, no. 2, pp. 363–370, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Shima, T. Nakajima, Y. Seto, T. Nakajima, and Y. Sakamoto, “Changes in bile acid composition and hepatic microsomal membrane lipid fluidity in bile duct-ligated rat—ESR spin label study,” Japanese Journal of Gastroenterology, vol. 85, no. 3, p. 756, 1988. View at Google Scholar
  5. J. Tieppo, R. Vercelino, A. S. Dias et al., “Evaluation of the protective effects of quercetin in the hepatopulmonary syndrome,” Food and Chemical Toxicology, vol. 45, no. 7, pp. 1140–1146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Peres, M. J. Tuón, P. S. Collado, S. Herrmann, N. Marroni, and J. González-Gallego, “The flavonoid quercetin ameliorates liver damage in rats with biliary obstruction,” Journal of Hepatology, vol. 33, no. 5, pp. 742–750, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Montilla, A. Cruz, F. J. Padillo et al., “Melatonin versus vitamin E as protective treatment against oxidative stress after extra-hepatic bile duct ligation in rats,” Journal of Pineal Research, vol. 31, no. 2, pp. 138–144, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Ara, H. Kirimlioglu, A. B. Karabulut et al., “Protective effect of resveratrol against oxidative stress in cholestasis,” Journal of Surgical Research, vol. 127, no. 2, pp. 112–117, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. A. W. Boots, H. Li, R. P. F. Schins et al., “The quercetin paradox,” Toxicology and Applied Pharmacology, vol. 222, no. 1, pp. 89–96, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. P. M. Amalia, M. N. Possa, M. C. Augusto, and L. S. Francisca, “Quercetin prevents oxidative stress in cirrhotic rats,” Digestive Diseases and Sciences, vol. 52, no. 10, pp. 2616–2621, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Bengmark, M. D. Mesa, and A. Gil, “Plant-derived health: the effects of turmeric and curcuminoids,” Nutricion Hospitalaria, vol. 24, no. 3, pp. 273–281, 2009. View at Google Scholar · View at Scopus
  12. J. Gonzalez-Gallego, S. Sanchez-Campos, and M. J. Tunon, “Anti-inflammatory properties of dietary flavonoids,” Nutricion Hospitalaria, vol. 22, no. 3, pp. 287–293, 2007. View at Google Scholar
  13. J. Tieppo, M. J. Cuevas, R. Vercelino et al., “Quercetin administration ameliorates pulmonary complications of cirrhosis in rats,” Journal of Nutrition, vol. 139, no. 7, pp. 1339–1346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Martínez-Flórez, J. González-Gallego, J. M. Culebras , Tuñón MJ, and M. J. Tuñón, “Flavonoids: properties and anti-oxidizing action,” Nutrición Hospitalaria, vol. 17, no. 6, pp. 271–278, 2002. View at Google Scholar
  15. C. Tokyol, S. Yilmaz, A. Kahraman et al., “The effects of desferrioxamine and quercetin on liver injury induced by hepatic ischaemia-reperfusion in rats,” Acta Chirurgica Belgica, vol. 106, no. 1, pp. 68–72, 2006. View at Google Scholar · View at Scopus
  16. J. Abiles, R. Moreno-Torres, G. Moratalla et al., “Effects of supply with glutamine on antioxidant system and lipid peroxidation in patients with parenteral nutrition,” Nutricion Hospitalaria, vol. 23, no. 4, pp. 332–339, 2008. View at Google Scholar · View at Scopus
  17. A. Geetha, M. D. Lakshmi Priya, S. A. Jeyachristy, and R. Surendran, “Level of oxidative stress in the red blood cells of patients with liver cirrhosis,” Indian Journal of Medical Research, vol. 126, no. 3, pp. 204–210, 2007. View at Google Scholar · View at Scopus
  18. J. R. Goldin and M. M. Raymundo, Pesquisa em Saúde e Direito dos Animais, Porto Alegre HCPA, 2nd edition, 1997.
  19. B. N. Halpern and A. Pacaud, “Technique of obtaining blood samples from small laboratory animals by puncture of ophthalmic plexus,” Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales, vol. 145, no. 19-20, pp. 1465–1466, 1951. View at Google Scholar · View at Scopus
  20. D. L. Drabkin and J. N. Austin, “Spectrophotometric studies. I. Spectrophotometric constants for common hemoglobin derivatives in human, dog, and rabbit,” The Journal of Biological Chemistry, vol. 98, pp. 719–733, 1932. View at Google Scholar
  21. K. Yagi, “Assay for blood plasma or serum,” Methods in Enzymology, vol. 105, pp. 328–331, 1984. View at Google Scholar · View at Scopus
  22. H. P. Misra and I. Fridovich, “The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase,” The Journal of Biological Chemistry, vol. 247, no. 10, pp. 3170–3175, 1972. View at Google Scholar · View at Scopus
  23. H. Aebi, “Catalase in vitro,” Methods in Enzymology, vol. 105, pp. 121–126, 1984. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Wendel, “Glutathione peroxidase,” Methods in Enzymology, vol. 77, pp. 325–333, 1981. View at Publisher · View at Google Scholar · View at Scopus
  25. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  26. D. L. Granger, N. M. Anstey, W. C. Miller, and J. B. Weinberg, “Measuring nitric oxide production in human clinical studies,” Methods in Enzymology, vol. 301, pp. 49–61, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. J. A. E. Gonzalez-Gallego, El hígado. Fisiopatologia de las Hepatopatias, Fundamentos de fisiopatologia, edited by E. A. M. Cordero, McGraw-Hill-Interamericana, Madrid, Spain, 1998.
  28. A. R. Soylu, H. Umit, A. Tezel et al., “Antioxidants vitamin E and C attenuate hepatic fibrosis in biliary-obstructed rats,” World Journal of Gastroenterology, vol. 12, no. 42, pp. 6835–6841, 2006. View at Google Scholar · View at Scopus
  29. V. Shah, M. Toruner, F. Haddad et al., “Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat,” Gastroenterology, vol. 117, no. 5, pp. 1222–1228, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Orellana, R. Rodrigo, L. Thielemann, and V. Guajardo, “Bile duct ligation and oxidative stress in the rat: effects in liver and kidney,” Comparative Biochemistry and Physiology, vol. 126, no. 2, pp. 105–111, 2000. View at Publisher · View at Google Scholar
  31. J. Barp, A. S. R. Araújo, T. R. G. Fernandes et al., “Myocardial antioxidant and oxidative stress changes due to sex hormones,” Brazilian Journal of Medical and Biological Research, vol. 35, no. 9, pp. 1075–1081, 2002. View at Google Scholar · View at Scopus
  32. B. Halliwell and J. M. C. Gutteridge, “Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death,” in Free Radicals in Biology and Medicine, B. Halliwell and J. M. C. Gutteridge, Eds., pp. 187–267, Oxford University Press, Oxford, UK, 2007. View at Google Scholar
  33. L. L. Ji, F. W. Stratman, and H. A. Lardy, “Antioxidant enzyme systems in rat liver and skeletal muscle. Influences of selenium deficiency, chronic training, and acute exercise,” Archives of Biochemistry and Biophysics, vol. 263, no. 1, pp. 150–160, 1988. View at Google Scholar